When the Logs come down at Rivière du Loup

APRIL ARTICLES

THE CO-OPERATIVE TRUST.
EVOLUTION OF THE TRUCK.
HANDLING PRODUCTION OF THE TITAN
GEOLOGICAL HISTORY OF CARTAGENA
The Co-operative Investment Trust

A reproduction of the letter which has been sent to every depositor in the Trust.

March 20, 1925

To the Depositors
In the Co-operative Investment Trust
Of Imperial Oil, Limited

Dear Sir or Madam:

Under date of January 22nd, a circular letter was addressed to the depositors in the Co-operative Investment Trust dealing with the disposition of the stock to be acquired by the depositors under the terms of the Trust, and strongly advising the depositors in their own interest - if at all possible to retain possession of their stock and thus make permanent a profitable investment.

As a result of that letter the Trustees have received inquiries from various depositors as to whether the present plan will be renewed or some modification thereof offered by the Board of Directors of Imperial Oil, Limited. It would seem desirable, therefore, that the Trustees should now advise the depositors as to the situation.

When the Trust was initiated nearly five years ago, its primary object from the standpoint of the large body of shareholders was to create a widespread partnership in the business by the adoption of a plan so generous in its terms as to make it the interest of the largest possible number of wage earners in the organization to become stockholders, and thus through this stock interest in the Company to be permanently associated with it other than as employees.

It is impossible at the present time for the Directors of Imperial Oil, Limited, to reach any conclusion as to whether or not the present Investment Trust should be followed by a plan which, whatever its terms or provisions, should have the same object in view. The reason for this is that the Directors serve not only the employee shareholders who acquire their stock under the present Trust, but the very much larger number of other shareholders who represent today ninety-seven per cent of the ownership of the business. These other shareholders have contributed one-third of the cost of the stock acquired by the employee shareholders (fifty cents for every dollar paid in by the depositor) in order to bring about a condition of an employee partnership in the business. If this result is not accomplished, the Directors are not justified in asking the shareholders to continue any contributions for a purpose which has been shown to be unattainable.

At a market price of the new Imperial Oil stock of $30 per share, the return on the present dividend is 3.33%. This, however, does not represent the return on the actual investment of the depositor. The return to the depositor is what he receives on what he actually paid in. Assuming an employee's proportion of the accrual amount to be 9.55% (the present estimate) his return on the capital he has actually invested, if a depositor for the full period of the Trust, is equivalent to 7.34% on the basis of a 25 cents per share quarterly dividend.

While the Trustees, of course, recognize that among some 2,000 depositors, there will arise a number of individual cases in which the pressing
Evolution of the Automobile

People of the thirteenth century visualised motor cars

SOMETIMES about the middle of the thirteenth century, a Franciscan, Roger Bacon by name, recorded on a piece of parchment the prophecy that "We will be able to propel carriages with incredible speed without the assistance of any animal."

That early patron of mechanical transport no doubt suffered under the jeers and jibes of his skeptical brethren, and unfortunately he did not live long enough to experience the full joy of "I told you so!"

While the motor car, as we know it to-day, has only been with us about 25 years, a search of the early type leads us back several hundreds of years.

In records of the 17th century, we find that a worthy, Johann Hausach, was a "manufacturer of chariots going by springs and making 2,000 paces an hour." The only surviving feature of this vehicle is the erank by which some cars of to-day are wound up. That the chariot, referred to was only intended for the use of virtuous persons may be taken from the fact that no steering gear was provided, and the poor old bus had to confine its travels to a straight, if not narrow path.

As we move forward down the years, we find in 1769 that a Frenchman, Cugnot, built a steam gun-carriage, a three-wheel vehicle that would look a trike lopped off when set alongside of some of the motors of our day and generation. A large boiler which strongly savored of a maple syrup kettle gone wrong, stuck out in front and no doubt provided the first germ of the idea of foot warmers for the driver.

Two-thirteen-inch single-acting cylinders converted the steam into mechanical energy, this being transmitted to the back wheels by a ratchet...
months that it was used. It is comforting to know that even those days they had tire troubles.

When speaking of those early workers, such names as Alex Winton, Elwood Haynes, R. E. Olds, Henry Ford and Thomas White must not be overlooked, for they all contributed much to the modern car.

When the first White Steam car appeared in 1901, automobiles were not permitted in Central Park, New York. Speed limits in large cities were six and eight miles an hour. Court calendars were closed with damage suits arising out of the horse’s early and unfavorable introduction to the “horseless carriage.”

Automobiles were considered fools destined to die early. That small part of the public interested in the greater possibilities of the automobile clambered vigorously for “rigs that run” and “buggies that were safe.”

During the last quarter of a century the car has been growing up. The first few years were largely noteworthy for the efforts put forth to insure reliability of operation. Frequent changes in design of the body followed. The entrance was moved around from the rear of the car to the side, and the starting crank made its way from the side to the front. Steering wheels replaced steering levers, diameter became larger as the wheel and tires decreased.

in 1886 Daimler and Benz produced the first gas-burning two-cylinder engine, which marked the dawn of the type of car in common use to-day.

On this continent, C. H. Duryea, in 1893, built a gasoline driven car with its cylinders placed lengthwise of the body in order to reduce vibration. The drive was through a bevel-gear differential countershaft, and through a chain to the rear wheels. Two years later a four-cylinder motor was developed, which must have been a husky piece of mechanism, for it wore out one set of solid rubber tires during the first couple of students to and from the Kern County (California) Union High School, is a powerful six-cylinder vehicle, one that has a power plant with the smoothness of the modern truck engine combined with the smoothness and flexibility of the passenger car. It carries from twenty-eight to thirty-three passengers.

An era of multiplicity of cylinders followed, and they numbered from 2 to 4-6-8-12, the four-cylinder being perhaps the most popular. We are now enjoying the age of comfort developments as witnessed by improvements in spring designs, balloon tires, closed cars and luxurious furnishings and equipment.

Drove-tailing with this stage in the growth of “carriages which can be propelled at incredible speed without the aid of any animal,” is that which has to do with the economical operation of the cars, and improvements in engine design, including carburation and ignition. What those who are alive from 25 years hence will see, is a matter for conjecture. There is no reason why the car of that day should not be able to make its way across bodies of water, and it is less improbable that certainly types will be able to christen an ocean on the spot.

The accompanying illustrations provide a wonderful study of transportation contrasts. The one of E. O. Billitter’s truck was taken a mere eighteen years ago when bus travel the gasoline way was in its infancy, and the other on the same pages shows a new motor coach, modern-day in its design and appointments— a veritable vehicle de luxe.

Both vehicles shown are of International make; the older one was called a auto buggy and was built about 1907. It was operated by a two-cylinder engine and chain drive. The influences of the horse-drawn vehicle are very apparent in its make-up, especially its high wheels. In fact, the auto buggy was nothing more than an adoption of the old spring wagon hack. It carried from eight to ten passengers.

The new International coach, on the other hand, which is shown herewith and which has recently been put into operation for transporting
Handling the Production of the Titan

BY MAIDA STEWART

ROYALITE No. 4, brought in about the middle of October and eventually harnessed and controlled after a series of blowouts and fires, began, the latter part of December, to produce a very high grade oil at the rate of approximately three hundred barrels per day. To celebrate the occasion, Sunny Alberta staged one of the fiercest blizzards experienced during the last forty years, according to the Old Timers residing on the road from Black Diamond to Okotoks, a distance of seventeen miles, with snow five feet deep, was impasseable for over half the way, and Okotoks was the nearest railroad shipping point to the producing field. The only transport in sight at the moment were the two White trucks of 2-ton capacity that all had been carrying the product from the Absorption plant at Black Diamond to Okotoks, seventeen miles, and it was possible to make only one trip each day with these which meant taking care of but twelve hundred and fifty gallons. Steel storage tanks from Sarnia and from the Refinery at Calgary were rushed to Okotoks by rail and transported by teams to Black Diamond, but were filled soon after they were set up.

Four International Trucks of two-ton capacity, borrowed from the Marketing Department, of Imperial Oil, Limited, and put at once into action, relived the situation somewhat. They had to cross through ploughed fields for nearly eight miles and were forced to travel at about twice the speed for which they were designed as, not being equipped with lights, they had to complete their journey in daylight, added to which the solid rubber tires did not have sufficient traction and they were continually being stalled in the deep snow.

An attempt to clear the road of snow by using a standard road grader was made but this was not suitable for the work, and as inquiries made locally showed the impossibility of purchasing a plough capable of doing what was required, we had to make one. A plough was designed and built to clear the road of snow from ditch to ditch, obviating all danger of surplus moisture when the spring break-up comes. It was on the job in five days. During the period between the first of the year and the taking of the snap-shots, several Chinooks of the calibre for which this district is noted, were experienced, with the result that instead of having snow to clear, the plough had almost solid ice to contend with on certain stretches of the road where there had been much traffic before the snow had reached that point.

The farmers along the route were more or less hostile at first. They, of course, had no trouble handling grain with sleighs over the road that could not be travelled with trucks, and we had to tear down their fences to reach the fields through which we were forced to cross. We had a lot of criticism to stand, and were informed on many occasions that what we were doing was worse than useless, as what road we had cleared would be made impassable again when the next storm arrived. There have been several storms during and since the clearing of the road, but it is still open, and these same farmers are now the best friends we have, as they say they have as good, if not a better road than they have ever had at this time of the year. The snapshots of the road and the unloading plant at Okotoks were taken on the fourth day of February. This was the last stretch of road to be cleared, going into Black Diamond.

The trucks used to arrive in Okotoks all about the same time and as the equipment there consisted of a small pump and a one and one half horse power motor, considerable time was lost in unloading. A twenty-one foot tank of six feet six inch diameter was designed and equipped with a header to care of ten two-inch hose, and a pump was built so that gravity would unload the tanks, but still keep the bottom of the tank close to the level of the pump, as the oil, being so light, is very difficult to lift.

While the unloading tank was being installed, the plough was working every day from Okotoks towards the field gradually clearing up the road, and small contractors had been engaged with equipment, including trucks of the following makes: Maxwell, Beaver, Reo and Ford, of various capacities running from 50 to 290 gallons. Our own White trucks which had been making one trip per day, were now making from four to five. The Marketing Department equipped trucks, equipped with lights and having better gasoline.

The Department of Mines at Ottawa has just published a report for the year 1924. Messrs. P. V. Rosewarne and H. McE. Chantler conducted the survey for the Department and analysed samples of gasoline collected from wholesale distributors in the larger cities of Halifax to Vancouver, these samples being thoroughly representative of the gasoline sold in Canada. The finding is in respect to the quality of gasoline as follows:

"The analyses and detailed examination of these samples show that the average quality of the gasoline sold during 1924 was superior to that sold during 1923, which, according to

the survey made that year, was of good quality. The average octane numbers of the gasoline sold in Canada during August, 1924, is superior to that sold in the United States during July of the same year, and the U.S. Federal specifications for U.S. Government motor gasoline. "The variation in quality during 1924 was greater than that during 1923.

The variation in the quality mentioned by the investigators is probably due to the "distress" gasoline which was imported into Canada last year and which was inferior to the home-manufactured article.
1. One of the "wild" wintry waves boards the ship boisterously!
2. A modest catch in equatorial waters.
3. When the ice breaks in the St. Lawrence. About the first of May, Imperial tankers will be blazing the season's trail through fields of ice with oil for Montreal East Refinery.
4. The author's conception of a globo-treater.
5. No, this is not a scene from "The Borber of Shanerville." it is part of Neptune's thorough inspection when "the line" is crossed. Neptune's blushing bride stands close to the port side of the picture.
6. Goliath, the ship's sturdy mascot.
7. Neptune's court all a grin after the purging of unstrates.
8. Over the bulwarks—a momentary occurrence in weather like this.
9. A very good view of heavy seas.
10. The "Second" is crowned with a sparrow.
11. A big day for the bunkie, despite the fact that the ship is 700 miles out to sea.
12. Sunday morning song service, a regular feature on any foreign trading tanker.
13. Goliath and his little friends are speculating about the next spell of bad sea.
The Geological History of Cartagena

By T. A. Link

Speaking the language of the historian, Cartagena is one of the oldest cities in America. But when considered in terms of geological history, it is built upon one of the most recent physiographic or topographic features.

Cartagena is built upon sand. In fact, the city, with its historic wall, was built on the extreme southwestern end or "hook" of an island very similar to "Sandy Hook." In geological nomenclature such a feature is also called a "Spit." Cartagena was built "on sand" almost four hundred years ago, and may stand another four thousand—if we say in common ordinary street talk—nothing "unusual" happens. The "unusual" things are the everyday occurrences in the geological laboratory of the Almighty. The everlasting making and re-making processes go on, and on, and on. For instance, one of those little riddles called "tidal waves" of about thirty feet in magnitude, would effectively drown all the inhabitants of Cartagena.

Behind the city of Cartagena, inland and separated from it by a shallow lagoon, is a high hill called the "popa," with steep faces on the southwest and southeast sides, and sloping gently toward the northeast till it reaches the sea several miles northwestward from Cartagena. This hill was not just "put" there so that the Catholic missionaries might build a monastery on its highest part at the brink of the sheer cliff, nor for the nuts who leaped down this cliff rather than be taken prisoner by Drake's men. The Popa hill is held up by a series of alternating hard and soft coralline and marly limestones of quite recent age—geologically speaking. It is of such recent age that the greater number of coral species found at the top of that hill 310 feet above sea level, have children and grandchildren almost identical with them, living today in the waters of Cartagena Harbor. Of course the Popa hill was there when the Spaniards arrived, and more than likely also as far back as the time of King Tutankhamen, and who knows how long before that time.

In addition to the Popa hill there are others on the island surrounding Cartagena Harbor which stand as much as 300 feet above sea level, with those relatively recent corals, and farther inland, near Turabo, hills capped by this Popa coralline limestone rise more than 800 feet above sea level.

It has been a long, long time since these beds of coral were raised out of the bottom of the sea to their present levels, and then it took another very long period to deposit enough sand along the newly formed coast line to act as a foundation for that wonderful wall which surrounds Cartagena. That is, speaking in terms of years—but speaking in the language of the geologist it was all done during the last second of geological time, during the interval beginning somewhere around the last glacial epoch when the contract to carve out Niagara Falls was the topic of the day.

After the disturbance which elevated these corals high above sea level and affected more or less the entire Caribbean coast of Colombia, came the next, the shore line was naturally very irregular, with many points jutting out into the open sea, and numerous bays of various sizes. Scores of islands virtually rose from out the shallow bottom of the sea. On many of these islands, which apparently were the former sites of great colonies of corals, the deposits were tilted and squeezed up till they now stand at very high angles from their original horizontal positions, while on others the old coral beds are tilted very slightly. This rise of the continent naturally caused the then existing streams to flow much faster and consequently to do more cutting and bring more sediments to the sea. However, these sediments, which consisted of cobble, gravel, sand and mud, did not all come to rest immediately upon reaching the sea, but those which were not too heavy were churned and rolled about along the shore. The strong trade winds, which today blow from the north-coast to the northwest along the Colombian Caribbean coast, caused a current which carried the sands and slits in that direction, just to deposit them again on the lee side of the numerous points jutting out into the open sea—thus forming the numerous sandy hooks and "spits" which are found along the coast today. This depositional phase of the history of the Caribbean coast is therefore a relatively recent affair, and undoubtedly began near the end, or after the big Continental Glacier had receded from the United States.

However, the story is not quite complete, since evidence pointing in a still later but much milder disturbance is found along the coast. Apparently a general rise, all along the Colombian Caribbean coast, amounting to possibly between forty and sixty feet, took place since the previously described disturbance, but the effects of this slight rise were not as far-reaching nor did they make such radical changes in the existing shore line. The numerous points which came into existence previously still remain, but many shallow bays were drawn or disconnected from the sea to form salt water lagoons, some of which still have indirect connections with the sea, while others were entirely severed and have changed or are gradually changing over to fresh water lagoons. Islands separated from the sea but water less than forty feet deep were connected to the mainland. Submerged barrier beaches (sand-bars parallel to the shore line but under water) were also raised and become parts of the mainland.

The transportation and deposition of more sediments by the littoral currents (caused by the winds) continued and is still going on today. From a point about eight miles northeast of Cartagena, a series of long, narrow sand bars, with a sand spit on the western end and a shallow lagoon lying between it and the mainland, were formed. This "spit"
The Imperial Oil Review
April, 1925

is somewhat broader and has a crescent shaped "hook" at its southwestern extremity, and that is the place chosen by the Spaniards for the site of Cartagena. The sand is also at a somewhat higher elevation (accomplished by the wind) at this end of the long bar, and lying directly south and southwest of it is the bay of Cartagena, protected by coral islands with sandy hooks at their southwestern extremities. An ideal natural harbor with several narrow entrance channels such as "Boca Grande" (big mouth, which was closed up by the Spaniards) and "Boca Chica" (small mouth, the present entrance for all ocean-going ships) resulted.

A NATIVE CANOE ON THE CHIRA RIVER, PERU

The Original Practical Joke

LONG before there were men on the earth, apes in the primitive forests amused themselves by playing practical jokes on each other. Some human beings still do it. Perhaps it was the survival of this crude form of humor that gave Darwin the idea that men were descended from apes.

April 1, dedicated to fools and fooling, has long been regarded as a special opportunity for the practical joker to do his stuff. But every day is "All Fools' Day" to the incorruptible joker.

"How did I know it was going to end that way?" is his stock alibi when the object of his playful tricks is removed to the hospital for repairs.

There is no objection to harmless sport outside of working hours. But at work when a man's attention is needed to work safely, is no place for jokes, even those that may be harmless at other times. When the joker uses electricity or compressed air in his pranks, the result is sure to be serious. The place for monkey business is in the circus ring or the zoo. No plant is safe with the joker running wild.

The Annals of Motordom
A truncated history of the Industry

1900

THE first exclusive automobile show. It was held in Madison Square Garden in November. A gasoline car defeats electric and steam cars for the first time in a free-for-all race, Chicago. The steering wheel replaces the tiller and is used for the first time. The gasoline engine placed under a hood at the front of the care for the first time by an American manufacturer. John Brisben Walker rides to the top of Pike's Peak in a steam car. Automobiles permitted in city parks.

1901

The Automobile Club of America began erecting touring signs on the road from New York to Boston. Touring car with rear entrance all the rage, virtually replacing the two-passenger Stanhope type of vehicle. First American straightaway races on the boulevard between Brooklyn and Coney Island.

1902

An ordinance passed in Chicago forbidding motor vehicle drivers from wearing eyeglasses, though spectacles were permissible. Owing to accidents, motor cars are excluded from the parks of Omaha.

Tom Shevin, famous Yale football captain, fined $10 for exceeding the ten-mile speed in his new French car.

1903

The modern type of radiator reaches America from France. Limousine with rear entrance makes its appearance. Wheel bases lengthened from 88 to 96 inches. Racing cars have 110-inch base.

1904

The windshield used for the first time. Canopy tops for motor cars inaugurated. Test of anti-skid chains made in France. W. K. Vanderbilt, Jr., drives a mile in thirty-nine seconds, at Ormond Beach, Fla., beating Henry Ford's unofficial record of 39 2-5 seconds, made on the ice.

1905

The folding top is introduced and replaces the canopy top. First Vanderbilt cup race on the Long Island road course. First Fifth avenue motorbus operated. Vanderbilt mile record eclipsed by H. L. Bowden, who made the distance in 3:54 1-5.

Side entrance trolley cars coming into vogue.

1906

This year sees 39,683 motor cars produced in America. (A note for the sake of contrast: In 1924 3,650,000 such vehicles were manufactured in America.)

Some of our White Trucks servicing to-day in Canada and South America
Five hundred motor trucks in a commercial vehicle parade in Philadelphia.

1913
The cycle car appears.
The Ford company passes the 1,000 a-day production.
Number of motor cars in the United States, 1,258,062; in Canada, 50,650.

1914
Manufacturers experiment to see where they can arrange for baggage stowage on cars so that passengers will not be inconvenienced.

1915
Twin axes come on the market. Motor vehicles manufactured this year total 892,618.
The jitney wave surges over the country.

1916
Clover-leaf type of body in vogue.
Slanting windshields a feature of the automobile show.
The Safety-first federation makes first appeal for safer street traffic.

1918
Motorless Sundays end on Oct. 15.
Automobile dealers begin to take tractors as essential merchandise.

1919
Automobile makers worried over the high price of steel.
The U.S. government states that at the beginning of the year there were 15,845 unsold cars on the manufacturer's hands.

1921
Announcement in June that 2,000 passenger cars and 10,000 trucks, leftovers from the war, are to be sold.
In the spring price cutting on vehicles and tires is begun.

1922
Insurance policies changed to cover actual value of car, independent of cost.

IT is an unfortunate truth that many of the salesmen feel the Credit Man is not playing entirely fair in the way he handles some of the orders solicited by the salesman and sent into the office for approval. When the salesman's mind is occupied with such thought, he should instead of brooding over same, make it a point at the time of his next visit to headquarters to take the offending accounts up with Mr. Credit Man, discuss them together and get each other's slant. Learn the reason why it was impossible to ship the goods on a credit basis. The result will be a better understanding and a greater mutual confidence and probably a greater respect for each other's field of endeavor.

No doubt the Credit Man has many accounts that he is trying to collect which seem almost frozen to a standstill. With a mutual understanding between the salesman and the Credit Man, there are many little ways the salesman can assist in the collection of these slow accounts. The salesman, no doubt, has valuable information that would be helpful to the man in charge of the credits.
The collecting of accounts is not the job of the Credit Man alone. The salesman must become an able ally, in fact an auxiliary of the Credit Department. His Opportunity for building up customer's Credit Information is unlimited. The Credit Man is always seeking information about his customers. This he has to do because the standing of the customers is constantly changing, either moving up to a stronger financial position or falling back to a lower credit rating. It is impossible for the Credit Man to make a personal visit to each customer. With the salesman it is different; he is acquainted with and calls upon each customer. How it would help the Credit Man if the salesman would pass on to him every bit of news, good or bad, that he hears regarding a customer. In the Hotel, on the train, on the street and in every talk with fellow-salesmen, the opportunity for obtaining information presents itself.

(Continued on page 16)
Blame It on the Editor

When the paper all seems wrong, blame it on the editor.
They have a nose that is keen and strong.
Blame it on the editor!

If the news seems awfully tame, blame it on the editor.
Perhaps they know who to blame but blame it on the editor!

Things get in an awful stew, blame it on the editor.
Even with an editor.

Train and phones and weather, too, blame it on the editor.
Wait a bit 'till you begin to blame it on the editor.
If you never heard news in, don't blame it on the editor.

Stock Quotations

The latest stock quotations before going to press give the following bids as on April 2nd.
Imperial Oil (new issue) $30.00
International Petroleum $21.52

The Changing World

The Pilgrim Fathers used to call the roll to see who had been killed by Indians. Now we check up to see how many have been killed by automobiles.

The Invisible Line

(Continued from page 15)

Information pointing to a dangerous tendency should be sent to the Credit Man at headquarters with as little delay as possible. Then again if there are indications of a decided improvement in customer's position, the information should also be passed on. The items that the salesmen has to report might seem small but if they are constantly being forwarded to the Credit Man, it is easily appreciated that he is slowly but surely building up a Credit Information File that is invaluable.

In the early days the Manager directed the Salesmen, watched the accounts and wrote the collection letters. In fact everything passed under his hand. The growth of the business brought changes and departments into being. The Sales Department and the Credit Department started out on a friendly footing, and they naturally gravitated towards their respective departments—the one to sell, the other to collect. Gradually the Department Lines have become hazy, Smoke, lunch, a gate, generally closed, has been erected between the two departments, whereas the Sales and Credit Departments should be divided only by a line, a thin invisible line.

Curling at Imperial

THROUGH the generosity of one of the city curling clubs, sixteen curling stones were loaned to the Imperial Athletic Association for the purpose of finding out if there were any persons interested in curling. Word that the stones had arrived spread rapidly and as soon as ice conditions permitted, there were as many as possible at the rink as there were stones to accommodate all.

Due to the lateness of the season only a few opportunities for curling offered, but if the reception given these games is an indication of its popularity, there will be a lot of men carrying brooms next winter.

The picture is of the first curlers at Imperial Refinery.

Bowling at Hamilton

HAMILTON Division organized a bowling league which operated throughout the past winter with the enthusiasm characteristic to that Branch. The ladies as well as the men ran a schedule of inter-office games. Well chosen executives were the contestants on their toes throughout the entire time.

The result of this live wire organization was that the Imperial Oil League created a real sensation in Hamilton's bowling circles and made a name for itself. A team entered in the Business League was, at report last, leading the city.

One noteworthy feature of the League's program was the Bowling Ballspiel, edited each week by R. J. Woods. The post mortems of "last night's game" made good reading matter.

Page Sixteen

JOINT COUNCILS, 1925

Imperial Oil Limited
Selected and Elected Representatives for the Year

MANUFACTURING DEPARTMENT

Montreal Refinery

Elected
L. J. McCutcheon
A. E. T. Smith
R. Carsen
R. E. Paterson
D. J. Chown
J. A. Miller
D. W. Hackett
C. W. Thistlethwaite
G. G. Stewart
J. H. Spence
W. Edwards
F. C. Mechin

Selected
L. J. McCutcheon
L. J. McNaught
R. A. Carsen
W. E. Paterson
J. A. Chown
J. A. Miller
R. E. Paterson
R. E. Paterson
D. W. Hackett
C. W. Thistlethwaite
G. G. Stewart
J. H. Spence
W. Edwards
F. C. Mechin

Sarnia Refinery

Elected
C. W. Mclean
E. McLean
W. J. M. MacLean
A. R. McLean
H. McLean

Selected
C. W. Mclean
E. McLean
W. J. M. MacLean
A. R. McLean
H. McLean

Regina Refinery

Elected
H. McLean
P. L. McLean
P. L. McLean
J. L. McLean

Selected
H. McLean
P. L. McLean
P. L. McLean
J. L. McLean

Regina Refinery

Elected
H. McLean
P. L. McLean
P. L. McLean
J. L. McLean

Selected
H. McLean
P. L. McLean
P. L. McLean
J. L. McLean

Halifax Refinery

Elected
E. E. Bicknell
J. W. Jenkins
M. J. Morrish
M. J. Morrish
W. Robson

Selected
E. E. Bicknell
J. W. Jenkins
M. J. Morrish
M. J. Morrish
W. Robson

Calgary Refinery

Elected
R. J. Macdonald
E. D. Macdonald
J. J. Macdonald

Selected
R. J. Macdonald
E. D. Macdonald
J. J. Macdonald

F. T. McKeen

Ioco Refinery

Elected
D. A. G. Fothergill
J. G. Cameron
R. W. C. Cameron
W. A. Cameron

Selected
D. A. G. Fothergill
J. G. Cameron
R. W. C. Cameron
W. A. Cameron

MARKETING DIVISIONS

St. John's, N. B.

Elected
A. R. Pyne
A. R. Pyne
A. R. Pyne

Selected
A. R. Pyne
A. R. Pyne
A. R. Pyne

MONTREAL

P. F. Sinclair (Chairman)
C. D. Dunn
E. A. Oliver
D. N. Mair
G. L. Thompson (Secretary)

ANNUITY AND BENEFITS COMMITTEE

W. B. Elsworth
D. T. Cunningham
E. A. Kennedy
G. L. Thompson (Secretary)

Hamilton

Elected
Thomas North
Ray Robertson
H. B. Rattle

Selected
Thomas North
Ray Robertson
H. B. Rattle

Ottawa

Selected
J. H. Cox
F. S. Haggart
A. E. C. Coupland

MONTREAL

P. F. Sinclair (Chairman)
C. D. Dunn
E. A. Oliver
D. N. Mair
G. L. Thompson (Secretary)

ANNUITY AND BENEFITS COMMITTEE

W. B. Elsworth
D. T. Cunningham
E. A. Kennedy
G. L. Thompson (Secretary)
Life is a grindstone
and whether it grinds
a man down or
polishes him up
depends on the stuff
he's made of

Josh Billings