IT MIGHT be said that those who are young are little concerned with security. Youth has a calm assurance that all that is needed is opportunity, and that given opportunity the security will take care of itself. Those who are older are less concerned with opportunity, and give deeper thought to security for the retirement years. The truth of the matter is, however, that in a foreboded industrial organization security and opportunity go hand in hand.

Imperial Oil's savings and pension scheme has recently been revised upward in the light of changing conditions brought about largely by the war. The purpose of the pension scheme is to provide, at 55 for women and 65 for men, an adequate retirement income. At one and the same time it is providing for the comfortable retirement of those whose years entitle them to rest, and for the advancement of younger persons who can accept the challenge of opportunity with their mental forces unhampered by any fear of insecurity in later years. This policy is seen in action almost daily. Only recently a director of Imperial Oil retired at 65; as a direct result a younger man was elevated to the board—a man whose career began as an office boy. There were also other promotions as other men stepped up.

The person who is directly affected by the employee benefits program is, of course, the employee. He is the chief and immediate beneficiary. Yet there are many indirect benefits to those other groups to whom the Company owes a responsibility—the shareholder, whose money makes possible the existence of the Company; the customer, who must be continuously served with the best possible products at the lowest possible cost; and the public-at-large, for a progressive industrial organization must recognize and discharge its responsibility to the community as a good citizen.

An employee whose ambition is fostered by the knowledge that there is opportunity for his advancement; whose fear of insecurity for himself or his family is allayed by the knowledge that in sickness, in the event of death or in retirement he has an assured financial position—such an employee will be a happier and more valuable person than one whose mind is clouded with worry because he does not have these guarantees. He will be able to make full use of his energies and abilities to qualify himself for better positions and in these he—or she—will do a better job. Such conditions must reflect to the advantage of both the customer and the shareholder; they must also make employees better citizens.
THE AIR AGE, WHICH FOCUSED WORLD ATTENTION ON THE PACIFIC NORTHWEST, IS ALSO OPENING THIS RICH FRONTIER.

Traditional old frontiers are moving northward. By use of the airplane man has conquered the spaces of the north and the Arctic climate. In developing war-time defenses he gained access to a wide field of natural resources which now await his hand.

Between 1939 and 1945, spurred by the exigencies of war, both Canadians and Americans did a great deal of secret pioneering in the Arctic. Sides by side they built a roadway, a pipe line and a chain of modern airports through the country of the caribou and the great white bear.

Long ago Imperial Oil had pioneered in aviation refueling installations all across northern Canada. The Company itself made the first flight north of the Hay river in opening up Fort Norman in 1919. It was natural therefore, that when these northern war projects were begun the Company was asked to undertake installations and caches to refuel planes, truck convoys, river boats and "cat" tractor trains.

Now peace has come again and this new has acquired world-wide significance because much of the world's air traffic will pass over it. Commercial air-liners are planning establishment of permanent passenger and cargo schedules over routes opened by men who met the threat of Japanese invasion or flew bombers and war cargoes to Russia during the battle years. Authorities estimate as much as 50 per cent. of all the world's future air traffic may cross the strategically located Pacific northwest.

The reason for this air traffic is simply that northwestern Canada and Alaska lie on routes that are the shortest distances between many important world points. In the Aleutians the Japanese were halfway between Tokyo and San Francisco, on the shortest route between the two. The main centres of population and industrial development are in the northern hemisphere. None of them is north of the Arctic circle and few are in the tropics. The ten largest
cities lie between latitude 23° N and latitude 66° N, and of the 33 cities in the world with a population of more than a million, all but seven are in the same region. This means that most passenger and freight travel keeps to the northern hemisphere. The shortest routes between these populous areas cross the sub-Arctic again and again. About a quarter of the land surrounding the Arctic ocean is Canadian. It forms two great air-bridges—one across the Atlantic to Europe and the other northwestward to Asia and the east.

The air age also opens this northernward "bridge" to possibilities of development of special significance to Canada. In the past great tracts had never been seen by man, and many areas could be reached only by dog team or canoe. Today the plane, equipped with wheels, pontoons or skis, can get in or out regardless of season or topography. It has opened the entire northland.

From the early days of bush flying Imperial Oil, always a pioneer, has kept pace with the peculiar needs of northern aviation and is well prepared as it meets this 1946 challenge.

Just after the end of the first great war the bush pilots, the couriers-de-bois of the air age, opened new areas for farming, mining and lumbering. Many of these districts lay in the Northwest Territories, northern British Columbia and Alberta and included the fertile Peace River country. Busy and settled today, they were called the new north then.

Now the plane is carrying our modern civilization still further north. Areas that have always appeared on school maps as great blank spaces have been forced on the public attention and it is now widely realized they contain not only valuable oil, mineral and timber resources, but many square miles of land suitable for wheat and dairy farming, and indeed the rugged scenery is so beautiful that the tourist trade is likely to become one of their most flourishing industries.

The potential wealth of the far north has been proven by the actual production which has been quietly developing in the less remote sections. Alaska produced $50,200,000 worth of fish in 1938.

Her salmon product alone for that year totalled $42,700,000. In 1942 Alaska's total mineral yield was valued at $19,306,000, of which $17,000,000 was gold.

The Yukon Territory in 1942 produced $3,204,971 worth of gold, $293,096 worth of silver and $44,448 worth of lead. In 1943 she produced $19,509 worth of antimony and tungsten.

In 1939 the Northwest Territories' fur harvest was valued at $4,185,105 or 11 per cent. of the total value of fur produced in Canada. Despite this, mineral production exceeded the value of furs from the territories in that year.

Alaska, the Yukon and the Northwest Territories now are served by daily and weekly air schedules with monthly flights even to the most remote posts. In addition, planes are chartered in much the same manner as a city dweller would hire a taxi.

Imperial Oil realized that peacetime aviation in the north would require consolidation of the foundations laid so swiftly in the fighting years, and in August 1944 sent Mr. Bruce Ross to evaluate present and post-war aviation possibilities in the Yukon Territory and the Territory of Alaska.

Aeronautically, he recognized, Alaska and the Yukon have to be considered as one. So he thought in terms which, after taking into consideration complications of international law and flying franchises, would continue post-war civil aviation on the basis of the splendid cooperation established between Canada and the United States as war allies.

The Canadian and Pacific northwest which he surveyed is big country. Flying is still hazardous in the more remote parts, although dangers that accompanied some of the flights taken by Mr. Ross will be looked upon as strictly pioneer conditions in the near future.

Just as the unit of travel measurement has shifted from distance to time, so did he find the centres of civilization moving northward. Edmonton, situated just south of the exact centre of the province of Alberta, has long been considered the jumping-off place for the north. Beyond the city stretch hundreds of unpopulated miles of muskeg and timber to the northern boundary. Beyond that, the Northwest Territories sweep, lonely and silent, to the Arctic Ocean.

The people of Edmonton, theirs is a city serving the north. Yet down north from Edmonton run two divergent corridors of steel to Dawson Creek, B.C. and Waterways, Alta. To Mr. Ross these two towns stand out as the real markers of the line between the well-established economy of the south and northern Alberta, northern B.C., the Yukon and N.W.T. North and west again lies Alaska, with an area somewhat larger than Alberta and Saskatchewan combined.

Citizens anticipate an accelerated post-war tourist trade as a result of publicity given the somewhat

A Canadian Pacific Airways' mechanic at Yellowknife, N.W.T., takes a prospector's case to the plane's pension before the takeoff into the inaccessible gold-mining hinterland.

A general view of Juneau, Alaska's beautiful mountain-girt city, which is the centre of the rich mining area of the great United States territory bordering on Canada's north west.
emphasizing the rugged nature of the northland. It is no place for those who are not young both in body and spirit. Mr. Rine’s comments about the ideal type of personnel for air service companies might apply generally.

“Personnel for any aviation servicing company in these territories must be picked for adaptability, experience, initiative and resourcefulness,” he reported. “They must have an ability to withstand altitude and a temperature range of 150° F. They must be prepared to meet comparative isolation, and a different standard of living from that to which they are accustomed, with composure. They must be willing to undertake considerable flying in all weather and travel with a minimum of luggage — on occasion as little as 15 pounds — and be cheerful, tactful and enthusiastic.”

However, life in the northwest has its compensations. The people of the northern territories are hospitable, friendly, enterprising and intelligent. They are eager to expand not only the natural resources development and industry of their own country, but to enlarge its cultural opportunities as well.

These, then, are the land and the people beneath the air routes leading to the Pacific, Australia and eastern Europe. These are the northland’s new frontiers.

A general view of the Imperial Oil refinery at Norman Wells is seen here. 0 helped supply gasoline for Northwest Territories people in Yellowknife, N.W.T., has a thriving business section. The hotel is shown on the right, restaurant pictured in left centre.
ROUTE SALESMEN

Of the several hundred different occupations in the oil industry one of the best known to the casual public-at-large is that of the truck driver.

There are many kinds of trucks to be driven in many kinds of jobs, of course. There is the chap who is helping to look for oil in the Maritimes or at Fort Norman or in the foothills of the Rockies. There's another who helps to lay pipe lines, and still others who truck packaged products such as wax to warehouses or customers. But the driver the public-at-large thinks of is usually the tank wagon driver.

Imperial Oil has 541 tank wagon drivers. They work from Newfoundland to British Columbia and from the U.S. border to the Northwest Territories, because wherever the company pioneered a new area there followed storage tanks and delivery trucks.

There's a saying that certain kinds of jobs attract certain types of men, and whether you select your man from the maritimes or the prairies he'll be pretty much the same sort of chap. It seems to be that way with the driver, tank wagon or otherwise.

Most of them are family men, although many began their jobs as single men and married a few years later. Most of them are bluff and hearty and friendly, and many a motorist in distress has been helped by an Imperial Oil driver.

Meet Harry Workman, Imperial Oil tankwagon driver pictured here at home with two of his children.

Before morning their trucks, drivers sort delivery cards, arrange most economical route and familiarize themselves with orders.

Prompdy at 7 a.m. drivers appear at the dispatch window for details of the morning's first delivery. Lines are organized for fastest, most economical routes. Here Henry Beeches, an Imperial driver for 25 years, gets his morning's orders.
Imperial driver. Most of them like to get out and meet people, and nine out of 10 tell you the job is in their blood and if they had to sit in an office behind a desk all day they'd go mad.

No doubt the work has something to do with it. It takes a real man to wrestle an 18 or 20-ton tractor trailer up and down hills, around curves and through city traffic. Backing a big tractor trailer into a station brings honest sweat to the brow. It takes skill and judgment to pilot a couple of thousand gallons of gasoline over an icy highway and know just when and how to start braking when some unthinking motorist in a light car starts cutting in or doing fancy tricks in front of you. It takes a lot of self-discipline to smile sweetly at all times and to act always as a company ambassador of good will.

But there are compensations. While hours vary in different localities, they are regular and an average day might begin at 7 a.m. and end at 4:30 p.m.; the average day would be eight and a half hours and five days is the normal week. One day might see about 3 trips from the storage tanks and perhaps 17 calls at service stations. A driver meets many people, gets plenty of fresh air and sees lots of country.

The big tank wagons are sometimes a bit tough to handle, but for most men there's a satisfaction in putting them through their paces—the same sort of pleasure a row boy gets out of taming a bad-mannered horse.

During and since the war there's been another compensation—a real one. Spare tires were not allowed, and a flat meant simply telephone in for a service truck. Drivers, however, are only human, and sometimes—oh very rarely, but sometimes—one has the dubious honor of sharing the chagrin most motorists have known; and with a tractor trailer capable of carrying enough gasoline to take an average car twice around the world, he runs out of gas!
TOWARD GREATER SECURITY

IMPERIAL OIL'S PENSION PROGRAM HAS BEEN REVISED TO MAKE
FURTHER PROVISIONS FOR RETIREMENT INCOME FOR EMPLOYEES.

Security is a watchword of the future. It is a
ting men and women want and expect in the
brave new world of which they dreamed through the
long years of war.

Churchill and Roosevelt were thinking of security
for all the peoples of the world when they drafted the
Atlantic Charter... "Freedom from want... Freedom from fear." Governments are seeking it
for their countries in the confusion of post-war recon-
struction. Fighting men want it for themselves and
their families in civilian re-establishment. Men and
women work to enjoy it now and to provide for it in
their old age.

To establish the greatest possible economic secur-
ity for all workers is the goal of sound postwar recon-
struction plans. In the industrial field Imperial Oil
is working toward this goal. The Company is seeking
through its annuity and thrift plans to assist its
employees in providing for their economic security.

Recently revised, after careful study, these plans
constitute a comprehensive program of protection
which affects approximately 11,000 employees includ-
ing those still on active service. It is so supplemented
by existing insurance, hospital, sickness and death
benefit, that, with its own twofold aspects of cash
savings and annuity contributions, it represents
one of Canada’s most advanced attempts to pro-
vide security for the employee both during and
after his or her working years.

As long ago as 1911 Imperial Oil inaugurated a

During his recent visit H. H. Hewitson, president, stopped in to chat with Imperial Oil’s oldest accountant, Walter H.

Dill of Holstein. Still in excellent health, of 85 years of age, Mr. Dill was employed with the Holstein refinery until retirement in 1928.

Joseph Cornier retired in 1936 from Montreal refinery and
spent his time in Montreal and file Boucher, N.B. One of
his most pleasant tasks is that of nursing grandson Johnny.

Martha and Sarah Abraham of Sarnia were formerly employed in the c a b e l w o r k s of Sarnia refinery. Sarah was the first woman
employed at the refinery, and for many years was in charge of the candle works. She retired in 1933. Her sister retired in 1934.

A keen, successful motor sailor and past commodore of Sarnia Yacht
Club, George A. Price was formerly with Sarnia refinery in
the blacksmith’s department until retirement in 1933.
REVISED EMPLOYEE SECURITY PROGRAM

Assures Larger Retirement Incomes

WHAT IS SECURITY?

- **IN THE EARLY DAYS IT WAS...**
 - A GUN
 - A SIDE OF BACON
 - A SACK OF FLOUR

- **TODAY FOR MOST OF US IT IS...**
 - A STEADY JOB
 - A GOOD COMPANY
 - A REGULAR INCOME

TODAY'S NEED FOR SECURITY

- **OUT OF 50 PERSONS AT AGE 65**
 - 4 will have retirement incomes
 - 4 will be virtually penniless but able to work

- **WHEN YOU ARE RETIRED**

- **SHOULD YOU BECOME DISABLED...**

- **WHY YOU NEED SECURITY**

- **1** will be without income and dependent on charity or the state

- **1965**

- **1945**

- **1970**

- **TWICE AS MANY OF AGE 65 or more are living today as 60 years ago**

- **17% more will be living**

IMPERIAL OIL LIMITED REALIZED THIS NEED AND...

- **in 1911**
 - Introduced a pension plan to benefit its employees

- **in 1932**
 - Introduced a present annuity plan

- **in 1939**
 - Included a thrift program to help employees save for special needs

- **in 1945**
 - Revised both annuity and thrift plans in order to meet changed conditions arising from the war

THE 1946 2-FEATURE SECURITY PROGRAM

THE TARGET... To assure...

- **A LARGER INCOME ON RETIREMENT**

FINANCIAL RESERVE TO MEET THEIR SPECIAL NEEDS

The Annuity Plan

Under the upward revision participants in the plans will receive an annuity at a yearly amount of annuity equal to 2% of total salary for the number of years of participation. Extra allotment may be made to increase the annuity if desired.

EXAMPLE: (no extra allotment made)

A participant for 30 years whose average annual earnings are $2400.00 receives a pension of $2400 x 30 x 2% = $1440.00

SUPPLEMENTARY CREDITS:

- Participants retire credits accumulated prior to Jan. 1, 1946, and additional benefits are provided without cost from March 1, 1939, to Dec. 31, 1945.
- Retired veterans who participate will also receive these benefits for the full period of their active service.
- Participants retired since March 1, 1939, will also receive a corresponding increase in pensions.

The Thrift Plan

Participants may set aside up to 3% of earnings for pension and savings to which the company adds up to 5%.

HERE'S HOW IT WORKS:

- **YOU MAY SAVE UP TO**
 - 17 OUT OF EVERY 100 YOU EARN

- **TO WHICH THE COMPANY ADDS UP TO**
 - 5 TO YOUR CREDIT

- **OF THIS**
 - 12 GOES TO PENSION
 - 6 GOES TO SAVINGS

If a larger annuity is desired, up to 12% may be used to buy annuity, leaving 12% for savings.

EXISTING INSURANCE, HOSPITAL, SICKNESS AND DEATH BENEFITS

WHAT THIS MEANS

TO THE EMPLOYEE

- Freedom from fear of insecurity.
- Protection for his dependents.
- Greater opportunity for personal advancement, both through freedom from financial worry and through the chain of promotion as those who receive pension age retire.

TO THE COMMUNITY

- Better citizens, because men and women whose security is assured build attractive and progressive communities.
- It promotes the common welfare; persons who have adequate retirement pensions will not be dependent upon charity or taxpayer.

TO THE SHAREHOLDER

- The program is a wise investment because the employee whose mind is free from worry can do a better job.
- The plan advances the welfare of all employees and of the community and the nation at large.
pension plan for employees and was one of the first industrial companies in Canada to do so. Later, the Company was among the first to turn from the type of plan in which retirement and the granting of a pension was entirely at the discretion of the employer. It inaugurated a joint contributory scheme which gave the retiring employee assurance that the latter years of his life would be restful and free from want. From time to time this has been revised in the interests of greater security at greater benefits. The recent revision made as of Jan., 1st this year is designed in the light of changing conditions to continue to assure adequate retirement income.

Long ago the Canadian settler thought of security largely in terms of a log cabin, a rifle, a barrel of flour and a side of bacon. Later three out of every four Canadians earned a living and enjoyed relative security on the land. As the country became industrialized this pioneer condition changed and men, working not directly for themselves but employed by others, wanted above all an old age over which the poorhouse rent no shadow, by which losses and incapacity for work were not ever-present, terrifying spectres. This sort of security was hard for the average working man to achieve.

Alert employers realized that an honest desire and hard work were not always enough to enable the average worker to safeguard his old age. They realized too that a condition in which a large proportion of aged persons became public charges was good neither for society in general nor for industry itself. Under the early programs to which only the employer contributed, both retirement and pension were usually at the employer's discretion. Later began the establishment of plans under which both the employer and the employee contributed and the funds were placed in trust to provide for pension purposes. This permitted the worker a direct part in providing a type of security on which he could rely with confidence. These plans largely restrict the benefits to those who stay in the service until pensioned by the Company and provide for refund of the employer's contributions to those who do not remain until retirement age.

From these earlier plans has evolved the type of program under which the employee's own contributions as well as his employer's are returned methodically year after year to purchase definite guaranteed annuities. Imperial's revised pension program provides for a pension to be paid in fixed annuities not dependent on retirement by the Company and a further annuity payable on retirement by the Company, for which funds are set aside on a trust basis.

Under war conditions it was not possible for all employees to participate fully in pension programs which were drafted in the light of pre-war conditions. Furthermore the actuarial basis had to be reviewed because improved health standards and medical care and the increase in life expectancy had made it necessary to adjust the proportion of people over 65 to more than twice that prevailing 80 years ago. It is estimated by these who study actuarial tables that by 1970 at least 28 per cent. of the total population will have lived beyond 65 years.

It is also true that the average earner now must support his children through both high school and college and his total period of employment. He also may have more elderly members of his family dependent upon him than his father had. With the present longer life expectancy it is a sad paradox, according to insurance tables, that out of an average group of 100 persons who are 65 years old, eight will have an income, eight will have no income but be able to work, and 88 will have no income and be unable to work. This last group will be dependent upon relatives, friends or the state.

During the depression of the 1930's it became evident that in general people had been unable to accumulate cash reserves with which to meet emergencies. This situation threatened the stability of the whole social-economic structure.

To counteract these two threats—an old age in which the unskilled worker has no income or an emergency for which he has no reserve—the desirability of some systematic provision for current savings and retirement pensions is apparent.

The younger age employee is when he starts to save, the greater the reserve he can build against the future. But youth is light of heart. To most beginners in industry a steady job and assured pay check represent security. They give little thought to old age or to the possibility of emergencies and developing responsibilities, but for the younger employee Imperial's thrift and pension plan afford protection against these future responsibilities and contingencies.

An orderly retirement today is in the best interests of society and industry as a whole as well as of the individual. While many workers appear to be capable of quick and accurate work at 60 as they were earlier in life, the graph showing speed of muscular reactions, reflexes and adaptability curves downward as a person passes this mark. Older workers really have earned their leisure by the time they reach three score and five. Moreover a good retirement plan restores the balance of young people and provides incentive and continuing opportunity on all levels of organization. A stabilized and ambitious personnel makes for an efficient company, and a company that is efficient makes for a better world.

Under the revised annuity program, pension credits already accumulated for service prior to the revision are retained by employees, and additional benefits are provided without cost to employees for the period from March 1, 1939 to Dec. 31, 1946. Veterans returning to work with the Company and taking part in the plan also will receive these additional pension benefits for the time of their service with the armed forces. Employees who retired on pension during the war also will receive a corresponding increase in pension.

The program is designed to provide at retirement a yearly pension equal to two per cent. of the total salary or wages for all the years during which the employee was employed and took part in the revised plan. As an example, suppose a man earned an average of $2,400 a year while participating in the revised plan. At normal retirement after 30 years of participation he would get a pension of $1,440 annually. This sum is equivalent to two per cent. of his earnings for each year or a total of 60 per cent. per year of his average yearly earnings. New employees may participate after one year of service.

Under the plan the employee selects three per cent.

of his salary for pension purposes and the Company matches this dollar for dollar to buy an annuity. This portion of the program is supplemented by pension credits at the Company's expense sufficient to make up the overall two per cent. pension, payable on retirement by the Company.

Normal retirement is at age 65 for men and 65 for women, having 20 or more years of credited service. The Company makes a greater contribution proportionately for women because of their earlier retirement age. Also the Company's portion of the cost increases with the age of the participant.

The revised plan follows the pattern of previous plans in its provisions to encourage savings. The saving features are closely interwoven with the pension plan. Under this phase of the plan an employee may set aside up to seven per cent. of his salary or wages for pension and savings, in which the Company will add up to five per cent. The Company contributes dollar for dollar on the first three per cent. and above this gives 50 cents for each dollar of employee contribution. Of the total 12 per cent., a minimum of six per cent. goes to pension and the remainder accumulates as savings.

Security for all people who work—men, women, young and old alike—is made up of a steady job and pay cheque now and protection against emergencies and old age in the future. Group insurance policies which set up a buffer against sickness or accident and protect dependents in case of death, coupled with a retirement pension and a savings reserve, represents a constructive attempt to provide such security.

The program is designed for present happiness and for the future. It throws a gentle light on the years beyond retirement and dispels the shadow of fear that too often has fallen on what should be the days of fulfillment for a long and useful life.
ANY Sunday noon you can see the fishing fleet chugging out of Vancouver or a dozen other ports along the British Columbia coast. The sturdy little vessels, loaded down with nets, leave a clean straight wake behind them in the quiet waters of the Strait of Georgia. With luck they will be back Friday evening, and in the captain's desk will be a neat pile of receipts for the fish that he has caught and delivered to canneries along his route.

Canada's fishing industry, grossing $75,000,000 yearly, is big business. Some of its vessels are directed by a radio telephone, and by means of electrical echo-sounders discover shoals of fish which are deep in the ocean. The day of sail has largely disappeared, most ships are powered by diesel fuel or gasoline.

More than half of Canada's fish are caught in British Columbia waters, and a vast number of these are herring. Canada's herring are today spreading her name afar, for every cannery goes to the United Nations Relief and Rehabilitation Administration. Let's take a trip on one of these B.C. fishing vessels bound for the haunts of herring.

Our ship is the "Western Girl," a 78-footer, driven by a 240 H.P. Vivian diesel engine. It is commanded by Capt. Charles H. Clarke of Vancouver. Under him are six fishermen-sailors and a cook, whose wages are a share of the proceeds from the catch. Dropping the great herring-net regularly at sunrise and sundown for five nights may bring aboard around 1200 tons of the finest Pacific herring—or just over seven million five-ounce fish. As these sell to the canneries at $4.50 a ton, shares for all will be substantial.

The "Western Girl" first stop is at an unique harbor installation. It is an Imperial Oil marine service station in the form of a big barge completely outfitted with the petroleum products a fisherman is likely to need for a week's work. Diesel fuel, Imperial stove oil and special lubricating oils are taken aboard. A pipe runs under the water from the city to this permanent anchorage and from it fresh water for the trip is drawn into our vessel. In fact, the barge is fitted like a shore service station; there is even a telephone for last-minute calls.

Underway again we pass beneath Vancouver's Lion's Gate bridge and turn in a southerly direction into English Bay. Twenty miles below the city we have a rendezvous at the mouth of the Fraser river with our packer, the "Western Star". This is the vessel which will carry the catch to the cannery, leaving us to follow the herring shoals and seine the fish.

Off the lightship "Sandheads II", guarding the entrance to the Fraser, we meet our packer and turn across the strait toward the southeast corner of Vancouver Island. There, in Swanson channel, we await slack tide at sundown to drop our net. Around us are a dozen other vessels, keen competitors in this free and democratic industry. We have had our last instructions over the ship-to-shore radio telephone and the crew is busy with the seine-net on the big platform aft—which is called the "seine-table".

The "seine" is a large net, the upper edge of which is kept near the surface of the water by floats while the net is kept in a vertical position in the water by sinkers attached to the lower edge. The seine is laid

A light skip tows the 10,000 dollar net in a giant circle trapping the fish. After the end has been made fast a line gathers the net into a "purse". The next operation, pulling in the net, is known as "blasting" which continues until the herring are pulled along the side forming a scoring mass.

An echo sounder frames a picture of ocean floor by a sonic reflected beam. Any solid object between the hull and the ocean floor causes a shadow; this shadows of fish are found.

Like a giant dipper the leader scoops up approximately one ton of herring. It is guided by a handle about 40 feet long.
The six foot wide braider dips again and again into the flanice, using herring in the seine. Each time the braider scoops up about a ton of fish, swinging it across the "Western Girl" on its 40 foot boom, and drops it into the hold of the packer.

Long before our huge seine is piled on the big table aft, the packer is on her way to the cannery, in this case at Steveston. There she is unloaded quickly and in well under eight hours the catch is cleaned, packed, cooked, boxed and on its way to feed the hungry multitudes in war-bom countries.

The operations in the cannery are streamlined for speed and efficiency. The herring are graded for size, laid in travelling groove belts and passed under a machine which at one sweep removes heads and tails and cleans them. They are cooked, packed by hand into open tins and dispatched to steam ovens for the first cooking. Then they are sealed, cooked again, labelled and boxed.

The cannery is a marvel of efficiency. Much of the hand work—mostly placing the herring in the moving grooved belt for mechanical cleaning and packing into tins—is done by women. They are garbed in clean coveralls, aprons, bandannas and rubber boots. Every two hours they rest for 15 minutes while equipment from one end of the plant to the other is washed down and sterilized with boiling water and steam.

Here oil plays an important part, for under this stark treatment lubrication must stand up. Long ago, Imperial Oil scientists developed a lubricant that excelled under these conditions.

Nothing is wasted. Head, tail and entrails go to a reduction plant which extracts fish-oil. The residue is sold as fertilizer. Last year herring grossed over ten million dollars and many experts consider that the field scarcely has been tapped. The trend of fishing is northward toward the Bering Strait and the Arctic Ocean. There countless millions of fish—all valuable to humanity—are believed to exist.
PERSONALITIES

Henry J. Rahives Retires
Henry J. Rahives, who recently retired from the position of manager of the marine department, is an internationally-known marine figure. Mr. Rahives started his marine career at the bottom of the ladder as an apprentice machinist. He turned to ship construction after obtaining chief engineer papers at sea, and was employed both by private firms and in U.S. shipping board posts. He joined Imperial Oil in 1929 as assistant manager of the marine department after overseeing the building of two Company tankers, the Albertelote and Calgarious. He became manager in 1933.

W. C. Garbutt Appointed Manager, Ontario Marketing Division
Formerly sales manager of British Columbia marketing division, W. C. Garbutt has been appointed manager, Ontario marketing division. “Bill” Garbutt joined the Company in 1939 as chief clerk in the general office. A year later he was transferred to New Brunswick as chief accountant, and in 1951 moved to the newly opened Hamilton office where he remained for ten years. In 1951 he was sent to Vancouver as chief accountant and became district manager in 1950. He was appointed merchandise co-ordinator in 1940 and sales manager in 1942.

T. D. Kelly Appointed Operations Manager, Marine Department
Capt. T. D. Kelly, who recently received the decoration of Commander of the British Empire, has been appointed operations manager of the marine department.
Capt. Kelly attended the R.C.N. college in Victoria, but it was closed in 1922 before he graduated. He then joined Imperial Oil as an able-bodied seaman, and in 1929 became master of his own ship. He joined the R.C.N.R. as a lieutenant in 1940, and held the rank of captain before retiring last year. Capt. Kelly achieved renown as commander of H.M.C.S. Prince David which took part in the Aleutian campaign and three invasions. In addition to his recent decoration he was mentioned in despatches.

C. A. Robinson Appointed Sales Manager, Ontario Marketing Division
C. A. Robinson joined the company in 1925 as a general salesman at Windsor, Ont. In 1928 he was placed in charge of the Company’s operations at Owen Sound, and remained there until 1937 when he was transferred to the industrial sales department. From 1939 to 1945 he served as resident manager at Brantford, Hamilton and Toronto, and in 1944 was appointed district manager for the Toronto area. Appointed merchandise co-ordinator for Ontario division in 1945, he served in this capacity until his recent appointment as sales manager.

W. A. Murray Awarded O.B.E.
W. A. Murray of Imperial Oil’s Montreal East refinery was awarded the O.B.E. in the New Year’s honor list.
Mr. Murray, who rose to the rank of group captain in the R.C.A.F., during the war, joined the Company in 1932 as a service station operator in Vancouver. In 1933 he joined the Izzo refinery as a boiler house helper, and served in various capacities in the refinery until 1939 when he was transferred to the engineering department at Sarnia. Mr. Murray enlisted in the R.C.A.F. in 1939. He returned to the Company in 1945 as a production control engineer at Montreal refinery.

IN THE NEWS

R. D. King Appointed Superintendent, Halifax Refinery
R. D. King joined Imperial Oil Limited at Sarnia in 1915 and early in 1917 was transferred to Halifax refinery. In 1928 he became refinery foreman there and in 1930 assistant superintendent.
At the outbreak of war in 1939 Mr. King joined the army and was posted as a staff officer to M.D. E. He went overseas in 1940 and returned to Canada in October, 1945. While overseas Mr. King rose to the rank of lieutenant colonel, and was mentioned in despatches. On his return to Canada he resumed the post of assistant superintendent at Halifax refinery and held this position until his recent appointment as superintendent.

W. R. Smeltzer Appointed Assistant Manager, Marine Department
Capt. W. R. Smeltzer, whose forebears commanded ships for generations, went to sea at age 16 in a square rigger. During the first world war he was torpedoed in the English channel, but soon sailed again in another ship.
He joined Imperial Oil in 1917, and became a master in 1918. In 1926 he was appointed marine superintendent at Talara, and in 1934 manager of the marine department’s operations division, the position he left to become assistant manager.

C. D. Crichton Appointed General Secretary
C. D. Crichton has been appointed general secretary of Imperial Oil Ltd., succeeding J. A. New who becomes general counsel.
Born in North Sydney, N.S., Colin Crichton saw service overseas in the last war. Joining the Company in 1932, he served in various departments and in 1939 became secretary to the vice-president in charge of marketing. In 1939 he was appointed secretary of the general marketing committee, and in 1943 assistant to the vice-president in charge of marketing. In 1945 he assumed the additional responsibility of vice-chairman of the general marketing committee.

F. G. Bird Awarded O.B.E.
F. G. Bird, manager of the land department of Imperial Oil’s geological department was awarded the O.B.E. in the honor lists issued this New Year.
Born in Ottawa, Mr. Bird saw service in World Wars I and II. Upon graduation from Queen’s University in 1914 he enlisted with the Royal Canadian Engineers. He rose to the rank of major and won the M.C. while overseas. Mr. Bird joined the Company in 1934 in the land department at Calgary. In 1940 he enlisted again, receiving the rank of major. In 1943 he became a lieutenant colonel, and executive officer of the corps of Royal Canadian Engineers. He rejoined the Company in 1945.

J. A. New Appointed General Counsel
J. A. New, who was formerly general secretary and general solicitor of the Imperial Oil Co., has been appointed general counsel of the Company.
Mr. New served overseas during the first world war as an officer with the Third Canadian Division. Upon his return from overseas he resumed his law studies, and on his graduation from osgoode Hall in 1939 he joined Imperial Oil as a solicitor.
In 1925 he became assistant secretary, and in 1944 was appointed general solicitor and general secretary.

APRIL • 1946
PERSONALITIES

David Napper Receives 40-Year Service Button
David Napper was presented with his 40-year service button just prior to his recent retirement.

Born in Petrolia, Ontario, Mr. Napper received his public and high school education there. In 1965 he joined Imperial Oil as a machinist at Sarnia refinery, and in 1965 became machine shop foreman. He held this position until his recent retirement.

Mr. Napper is an enthusiastic curler, and for the past ten years has been an active member of the Sarnia Curling Club. He officiated as club president during the 1944-45 season.

T. S. Johnston Appointed Manager, Marine Department
T. S. Johnston was born in Sarnia. He began his marine operations career when he joined the Standard Shipping Co. in 1928. In 1941 he became assistant manager of the Lago Oil and Transport Co., and in 1942 was leased to the Standard Vacuum Co. as assistant manager of their marine operations.

In 1946 he went to South America to study equipment on the Magallanes river in Colombia. Early in 1946 he returned to Canada, becoming assistant manager of the marine department, and continued in this post until his recent appointment as manager.

Charles Scrymgour Appointed Superintendent, Montreal Refinery
Charles Scrymgour was born in England and came to Canada in 1914. He joined the Company in 1919 as a junior engineer and draftsman at Halifax refiner. Most of his career with the Company has been spent in the Maritime provinces. He rose to be superintendent of Halifax refinery, the post he held at the time of his recent transfer to Montreal, and during the war years played an important part in the Company’s activities in the Halifax area.

In addition to his work at the refinery, Mr. Scrymgour has done considerable construction work for the marketing department in the Maritimes.

A. G. Scott Appointed Sales Manager, British Columbia Marketing Division
Gordon Scott joined the Company in 1926 as a service station attendant. Shortly afterward he was transferred to the pump department of Toronto division, and in 1928 was sent to Hamilton as lubrication engineer. In 1941 he came to Toronto in the same capacity, and in 1948 joined the lubrication sales department of general sales, subsequently becoming assistant manager of this department. In 1945 he became sales manager of this department. In 1945 he became sales manager of Ontario division, and recently went to British Columbia as sales manager, succeeding W. C. Garbutt who becomes Ontario division manager.

Dr. T. A. Link Appointed Chief Geologist
Dr. T. A. Link has been appointed chief geologist, succeeding O. C. Wheeler who recently was made a director of International Petroleum Co. Ltd.

Dr. Link joined Imperial Oil in 1925 and not long after leaving university, and was in charge of the party which located the discovery well in the Northwest Territories. In 1935-37 he returned to university to take his doctor’s degree.

Upon his return he became geologist-in-charge in western Canada exploration during much of the development of Turner Valley. He has been assistant chief geologist since 1944.

IN THE NEWS

Dr. J. L. Haggart Appointed Superintendent, Sarnia Refinery
Dr. Haggart joined the company in 1914 in Vancouver. In 1917 he enlisted in the army, and on his return to Canada in 1919 attended the University of B.C. graduating as a chemical engineer in 1925 with a scholarship for a three-year post graduate course in Europe. He attended the University of Paris from 1925 to 1926, graduating as a doctor of science.

In 1929 he returned to Canada and joined the Sarnia refinery in the laboratory. From 1939 until 1942 he served in various capacities in the refineries at Sarnia, Halifax, and in the west. Appointed assistant manager of St. Clair Processing Corp. Ltd. in 1942, he held this position until his recent appointment as superintendent of Sarnia refinery.

A. C. Harrop Appointed General Superintendent, Montreal Refinery
Alan Harrop joined Imperial Oil in 1923 upon his graduation from the University of Toronto. His first job was that of assistant chemist at Calgary refinery. In 1926 he became chief chemist at Calgary, and in 1927 moved to Talara as chief chemist of Talara refinery. He was appointed superintendent of Talara refinery in 1931. In 1934 Mr. Harrop returned to Canada as superintendent of Regina refinery, and in 1938 was transferred to Calgary as superintendent. In 1944 he came to Sarnia in the same capacity, and held this post until his recent appointment as general superintendent of Montreal refinery.

R. L. Dunsmore Appointed Co-Ordinator of Refineries for International Petroleum Co. Ltd.
Formerly manager of Montreal refinery, R. L. Dunsmore has been appointed co-ordinator of refineries for International Petroleum Co. Ltd.

Mr. Dunsmore joined Imperial Oil in 1930 as assistant engineer at Sarnia. During his years with the Company he has served in different capacities in the refineries at Sarnia, Calgary, Inco, Halifax and Montreal, and at Talara in South America.

Mr. Dunsmore has seen service in two wars. From 1934 to 1939 he served with the R.C.E. He rose to the rank of major, and received the M.C. In 1944 he joined the R.C.N.V.R., and was appointed director of fuel. At the time of his discharge he held the rank of commander.

Fred S. Gain Receives 40-Year Service Button
Fred S. Gain, who received his forty-year service button recently, was born and educated in Toronto. His entire business career has been spent with the company.

Mr. Gain joined the Company as an office boy in 1865 in the Ontario marketing division. During the first World War he served overseas, and on his return in 1919 entered the order department, of which he became manager in 1922. In 1926 he was transferred to the general sales department, and at present is a member of the lubrication sales department.

F. C. Lantz Appointed Assistant General Manager of Refineries
Born in Halifax, and educated at Dalhousie and McGill, Floyd Lantz joined the Company in the laboratory at Sarnia in 1922. A year later he was transferred to Calgary, where he became assistant superintendent. In 1928 he went to Barracena Refineries, Columbia, as refinery superintendent, and in 1934 returned to Canada as superintendent of Regina refinery. Appointed chairman of the manufacturing technical committee in 1936, he became manager of St. Clair Processing Corp. Ltd. in 1942.
WHAT ABOUT OCTANE RATING?

War-developed high octane fuels are waiting for the automobile engine of the future.

Octane rating and the neckband of a shirt have a lot in common. Both indicate a "size". The size of a shirt is commonly known by the length of the neckband. The "size" of a gasoline is commonly known by its octane rating.

Just as a man will work best and be most comfortable in a shirt which fits properly, so will a car work well only if the gasoline it is using fits the motor.

The petroleum industry—and the automobile industry—have been learning a lot about octane rating ever since the question of fitting the right gasoline to the motor first became a problem back in the days of the horseless carriage. During the war great advances in knowledge were made. This knowledge will undoubtedly influence fuel trends for the average automobile of the future, but the fuel of the future will not fit the engines in our automobiles today.

This is because the fuels available today have been tailored to fit today's engines. A man who takes size 15 shirt may wear a size 16 and even a 17 won't fall off. Similarly a motor designed to use 76 octane gasoline can use more costly fuel of higher octane number such as 100-octane aviation gasoline, but the extra cost would be almost entirely wasted.

Gasolines of lower octane number, like a shirt which is too small, just don't fit at all. They cause knocking and will not let the motor produce the power and miles per gallon for which it was designed.

Since the days of the horseless carriage octane ratings of motor gasolines have increased from about 50 to over 90. This has permitted compression ratios of engines to double. Doubling the compression ratio means doubling the horsepower from the same size engine and from the same amount of gasoline. Despite the improvements made in "tailored to fit" gasolines, their price (tax free) has decreased to about one half the price of 20 years ago.

To understand octane rating and its importance to our motor car we must look inside the cylinders of our engines, and we must find out something about compression.

Power is created in the cylinder of a motor by the piston first sucking in a mixture of gasoline vapour and air at a pressure of about 15 pounds per square inch and then squeezing the mixture to about 120 pounds per square inch. At this point, a spark sets the mixture on fire. If the gasoline fits the motor, or more specifically, if it tolerates the pressures developed in the cylinder, it burns very, very fast—but smoothly. The gases and heat formed by the burning increase the pressure in the cylinder to about 400 pounds per square inch. This pressure pushes down the piston which turns the motor and drives the car.

When the burning has created a pressure greater than a particular grade of gasoline will tolerate, the gasoline explodes so fast that the piston can't react quickly enough to pick it up and so a lot of the energy is wasted. Furthermore the explosion drives the gases against the piston and cylinder walls so violently that they strike like metal on metal. This produces a noise which, depending on the degree of "knock" of the gasoline, ranges from a faint "ping" to a resounding "bang". This is known as "Knock". Knock is the motor's method of telling that the gasoline does not fit, that the compression in the cylinder is too high for the octane rating of the gasoline.

The efficiency of a motor improves greatly with higher "compression ratios". Compression ratio is the volume in the cylinder of a motor when the piston is at the top. A compression ratio of 4 to 1 means the piston squeezes the mixture of gasoline vapour and air in the cylinder to one-quarter its original volume (and thus increases its pressure about 4 times). A compression ratio of 6 to 1 means the mixture is squeezed to one-sixth its volume. The increase in engine efficiency due to higher compression ratios is shown by a comparison of 1925 with 1935 car models. In 1925 automobile motors had an average compression ratio of 4.4 to 1 and produced an average of 50 horsepower. By 1935 compression ratios had increased to 6.1 to 1. These engines produced 109.7 horsepower from the same amount of gasoline. They could produce more power because gasolines were available that would not knock under the greater pressure.

An owner of a Cadillac in 1912 was probably the first to hear motor knock and learn what it meant. In that year the Cadillac was produced with a motor that squeezed the mixture of gasoline vapour and air a little more than any other car. The higher compression made the Cadillac something for its owner to brag about. More power and more miles per gallon were all his for the first few hundred miles. Then pleasure turned to consternation for the motor began to sound as if an evil spirit was under the hood rhythmically swinging a ten pound hammer. Carbon had formed in the cylinder head decreasing the volume there to the point where the pressure rose above the limit that the gasoline of the time would tolerate. The gasoline no longer fitted the motor, so the motor knocked. The extra power and miles per gallon were gone and the motor ran hot. No one at the time, including motor makers and gasoline producers, knew what caused the knock or how to remedy it. The words "octane rating", "octane number", and "anti-knock compound" were not even in their language.

Many guessers were made as to the cause. It was claimed that knocking was caused by carbon, by hot spots in the cylinders, by improper spark or spark adjustment, or by the batteries first used in the 1912 Cadillac. The last claim concerned Charles Kettering for he was responsible for the use of batteries in cars. He proved that batteries were not the source of knock-
ing and he soon learned that motors designed for higher compressions had to have a gasoline fitted for the higher pressures.

In 1918 Thomas Midgley Jr. started to work for Kettering. One of his first tasks was to find a chemical which would increase the "octane" of gasoline. Five years and thousands of chemicals later, Midgley tried a chemical for which there was no known use and which he ordered from Germany at $585 a pound. Eye dropper lots of this chemical when added to gasoline caused a knocking motor to purr like a kitten. At the same time the extra power in gasoline became available and the motor ran cooler. The chemical with the big effect was tetra ethyl lead, the chief component of ethyl fluid, the anti-knock compound in most gasolines today. Ethyl fluid will add as much as 20 octane numbers to the octane rating of a gasoline depending on the amount used and the chemical composition of the gasoline.

While Kettering and Midgley were developing ethyl fluid, petroleum scientists were unravelling the mysteries of petroleum. It was, and is, a great task since crude petroleum contains as many as 8,000 different chemicals. At high temperatures many of these disappear and new hundreds take their place, thus adding to the complexity. Furthermore it is exceedingly difficult to separate the great majority of the components one from another. Experiments on one component require great skill and patience; it is like observing the behaviour of one elusive child in a swarming school yard at recess.

One of the first great contributions by the petroleum scientists was the "cracking process". By controlled heat and pressure heavy oils were largely converted into "cracked" gasoline which had a higher octane number than the gasoline distilled from crude petroleum. Not only was better gasoline available but twice as much could be obtained from the same amount of crude.

Research on cracking has never stopped. The first cracked gasolines were about 10 octane numbers better than gasoline distilled in the usual way. By 1940 they were about 25 octane numbers better. During the war the requirements of super-charged aircraft engines brought into commercial production in the United States cracking processes producing 100 octane gasolines—double the octane number of many gasolines distilled from crude.

In addition to using intense heat and high pressure, the most modern cracking plants use a catalyst—a substance which, when added to the heavy oil being cracked, directs its conversion to higher octane gasoline but does not itself become a part of the gasoline.

The results of wartime developments in cracking processes are being brought to Canadian motorists by Imperial Oil. A fluid catalyst cracking plant, or "cat cracker" as it is commonly called, will be constructed at its Montreal East refinery during the coming year. It will be Canada's first "cat cracker".

Petroleum scientists have contributed to high octane gasolines by other methods than cracking. The gaseous components of petroleum can be separated and used as pure substances in controlled chemical reactions. During the war these chemical reactions have been used on a large commercial scale to produce synthetic fuels of high octane number. For example two "new" substances, aviation alkylate and cumene, are 100 octane synthetic fuels and are produced in Canada for use in aviation gasoline blends. Still more powerful fuels are definitely in prospect but not yet in commercial production. Such for example is trimethyl, produced by a chemical reaction from petroleum gase. Its octane number is so high, particularly when ethyl fluid is added, that it cannot be measured by the standard octane measuring methods.

The fitting of a gasoline to a motor is largely a matter of concern to the particular motor. Motor design, spark setting, valve formation, tightness of valves and wear on piston rings are all variables which prevent co-relation of octane number with any one engine. However, the petroleum industry, with its great research and manufacturing facilities, is able to provide gasolines which are suitable for any automobile on the road.

As for the future, the trend is toward higher compression engines and higher octane gasolines. The engines of tomorrow are probably on the drafting boards of the automotive industry which, as in the past, will look to petroleum scientists to supply the required fuels.
LA TRADUCTORA

LONG before the "Good Neighbour Policy" had become a byword of relations between the Americas, Marion Laschingher was making her contribution to friendliness and understanding in the offices of the International Petroleum Co. Ltd. For 17 years she has had the responsibility of translating letters or documents such as legal reports, construction specifications, marine matter and legal contracts from English into Spanish or vice versa. She was the first "traductora"—Spanish for translator—employed in the Company's Canadian offices. There is considerable variation in the volume of translating to be handled. Sometimes there are letters in French received by the secretary's department from residents of Quebec, but most of the correspondence and documentary work is in Spanish and the bulk of it is legal. Occasionally a contract, drawn up in English, is sent to Colombia or Peru where it is read and translated into Spanish, but returned to the Canadian office for reading before it is signed. It is Miss Laschingher's duty to read the Spanish version, making sure that the sense of no detail has suffered change in the process of translation.

"Sometimes I think it is not so much a knowledge of Spanish as a knowledge of English one requires," Miss Laschingher remarked recently. "Many of these letters and documents are so technical in character that it is a tax on the vocabulary of any one person to be able to translate them all. People in the different departments are very helpful with this specialized material," she added. But some of those "helpful people" offered the comment that Miss Laschingher's vocabulary in English, French and Spanish is remarkably extensive.

Born and brought up in Sarnia, Miss Laschingher entered high school just at the time when a quickened interest in South America had developed in this country and Canadian high schools were substituting a study of Spanish for that of German. She decided to study it along with the French language, and became so interested that she continued both courses in her university years.

Naturally, when she came to Toronto following her graduation, she looked for a position in which her proficiency in languages would be of value. She says she "just fell" into her present position. It seems possible, though, that a childhood spent in the oil towns of Sarnia may have guided her interests.

Miss Laschingher reads a great deal and discusses the literature of several countries with a keen sense of both style and values. She is an admirer of many French writers. Because she does not use French as much as Spanish in her work, she makes a point of reading French books in the original.

Miss Laschingher's job is just another of those specialized fields in the petroleum industry which provide interesting and frequently life-long employment for graduates of Canadian universities.

FLYING CLUBS RECEIVE PLANE

IN TRIBUTE to the work of the Royal Canadian Flying Clubs in aiding the war effort and in developing aviation in Canada, Imperial Oil presented the flying clubs association with a Cessna twin-engined five-seater cabin aircraft at its annual meeting in Winnipeg recently. The presentation was made by T. M. "Pat" Reid, of the aviation sales department, and H. F. Dougall, president, accepted the aircraft on behalf of the association.

In his remarks during the presentation Mr. Reid recalled the valuable work of the flying clubs in the development of aviation in Canada prior to the war, and the great contribution they made to elementary flying training during the war. Many of the government-operated elementary flying training schools were operated by the flying clubs.

In addition, men trained in aviation through their association with the flying clubs provided the nucleus of the first skilled civilian recruits during the war, and made an invaluable contribution in the early days when such skill was most needed.

IMPERIAL PRESENTS PARK

CITIZENS of Montreal West are to have a fine addition to their town as a result of the presentation of a park to their Canadian Legion branch by Imperial Oil Ltd. It is to be used as a war memorial, and at a later date will probably house a Legion memorial hall.

In the Spring of 1944 W.T.A. Bell, manager of Imperial Oil's Quebec marketing division was approached by Ralph Johnson, president of the Montreal West branch of the Canadian Legion. Mr. Johnson requested the use of a piece of property owned by the Company fronting on Westminster Ave. and Sherbrooke St. The property is 121 feet by 108 feet and ideally suited for a memorial of the type the Legion is interested in ultimately building.

The property, after being handed over, was landscaped and sodded and a honor roll and flag erected. The honor roll is a temporary wooden structure about 12 feet wide and seven feet high and lists the names of all men and women from that district who served with the armed forces during the war. It is anticipated that a more permanent honor roll will be erected soon and possibly at a later date the Legion memorial hall.

The official donation of the property was made by Mr. Bell at a Remembrance day service. "This property adds much to the beauty of our town," Mr. Johnson said in accepting the deed. "To the citizens of Montreal West we of the Legion ask that this park be viewed by you as a symbol of our desire to be of service, not only to ourselves, but in all projects that have as their objective the good of the community."

This picture was taken during the ceremony at Montreal West when Imperial Oil donated a park to the Canadian Legion.
MARKETING DEPARTMENT

NEWFOUNDLAND DIVISION (ST. JOHN'S OFFICE COUNCIL)—Standing, left to right—W. S. Bell, A. M. P. Perham, Miss M. Cormier, D. A. G. P. (President), J. A. Allard, H. M. Rowe (Chairman), W. W. St. Hilaire.

MARITIME DIVISION (SYDNEY COUNCIL)—Standing, left to right—G. J. MacIntosh, George MacKinnon, W. W. MacPhail, J. G. MacPhail.

ONTARIO DIVISION (LEAFIELD OFFICE COUNCIL)—Standing, left to right—E. G. MacIntosh, L. R. MacPhail, W. W. MacPhail (Chairman), Miss M. F. MacPhail, M. M. Barratt.

ONTARIO DIVISION (PRINCESSTOWN COUNCIL)—Standing, left to right—A. J. MacIntosh, G. E. MacPhail, W. W. MacPhail (Chairman), Miss M. F. MacPhail, R. E. Horne.

ONTARIO DIVISION (OTTAWA COUNCIL)—Standing, left to right—A. J. MacIntosh, G. E. MacPhail, W. W. MacPhail (Chairman), Miss M. F. MacPhail, R. E. Horne.

ONTARIO DIVISION (PRINCESSTOWN COUNCIL)—Standing, left to right—A. J. MacIntosh, G. E. MacPhail, W. W. MacPhail (Chairman), Miss M. F. MacPhail, R. E. Horne.

ONTARIO DIVISION (OTTAWA COUNCIL)—Standing, left to right—A. J. MacIntosh, G. E. MacPhail, W. W. MacPhail (Chairman), Miss M. F. MacPhail, R. E. Horne.

ONTARIO DIVISION (OTTAWA COUNCIL)—Standing, left to right—A. J. MacIntosh, G. E. MacPhail, W. W. MacPhail (Chairman), Miss M. F. MacPhail, R. E. Horne.

ONTARIO DIVISION (OTTAWA COUNCIL)—Standing, left to right—A. J. MacIntosh, G. E. MacPhail, W. W. MacPhail (Chairman), Miss M. F. MacPhail, R. E. Horne.

ONTARIO DIVISION (OTTAWA COUNCIL)—Standing, left to right—A. J. MacIntosh, G. E. MacPhail, W. W. MacPhail (Chairman), Miss M. F. MacPhail, R. E. Horne.
MARKETING DEPARTMENT

ONTARIO DIVISION (LONDON COUNCIL)—Standing, left to right—J. S. B. Fish, R. E. Moore, C. L. Coates, E. J. Grew, W. R. Head, E. N. P. Reed, C. S. Pratley, H. A. Gravel (Chairman).

ONTARIO DIVISION (ATKINSON COUNCIL)—Standing, left to right—E. J. Grew, W. R. Head, C. S. Pratley, H. A. Gravel (Chairman), J. S. B. Fish.

ONTARIO DIVISION (BROKEVILLE COUNCIL)—Standing, left to right—E. N. P. Reed, C. L. Coates, E. J. Grew, W. R. Head, H. A. Gravel (Chairman), E. N. P. Reed.

ONTARIO DIVISION (THOMAS COUNCIL)—Standing, left to right—E. N. P. Reed, C. L. Coates, E. J. Grew, W. R. Head, H. A. Gravel (Chairman), E. N. P. Reed.

ONTARIO DIVISION (GRAFTFORD COUNCIL)—Standing, left to right—E. N. P. Reed, C. L. Coates, E. J. Grew, W. R. Head, H. A. Gravel (Chairman), E. N. P. Reed.

ONTARIO DIVISION (ODERICH COUNCIL)—Standing, left to right—E. N. P. Reed, C. L. Coates, E. J. Grew, W. R. Head, H. A. Gravel (Chairman), E. N. P. Reed.

ONTARIO DIVISION (SUDbury COUNCIL)—Standing, left to right—E. N. P. Reed, C. L. Coates, E. J. Grew, W. R. Head, H. A. Gravel (Chairman), E. N. P. Reed.

ONTARIO DIVISION (SASKIA COUNCIL)—Standing, left to right—E. N. P. Reed, C. L. Coates, E. J. Grew, W. R. Head, H. A. Gravel (Chairman), E. N. P. Reed.

ONTARIO DIVISION (COBURG COUNCIL)—Left to right—R. S. Terry, W. E. Wingate, B. H. Mackie (Chairman), A. B. Dart, W. R. Head.

ONTARIO DIVISION (WODEN SOUND COUNCIL)—Left to right—E. N. P. Reed, C. L. Coates, E. J. Grew, W. R. Head, H. A. Gravel (Chairman), R. L. Legge, W. G. Franks.

1946 JOINT COUNCILS

ONTARIO DIVISION (WINDSOR COUNCIL)—Standing, left to right—J. S. B. Fish, R. E. Moore (Chairman), R. C. Brown. Seated, left to right—C. S. Pratley, H. A. Gravel.

ONTARIO DIVISION (HAMILTON COUNCIL)—Standing, left to right—J. S. B. Fish, W. R. Head, E. N. P. Reed (Chairman), R. C. Brown. Seated, left to right—D. H. Thomas, F. J. D. Dinan, H. A. Gravel (Chairman), C. R. Ramage, F. A. W. Kselected.

ONTARIO DIVISION (KENNEDY COUNCIL)—Standing, left to right—J. S. B. Fish, R. E. Moore (Chairman), R. C. Brown. Seated, left to right—C. S. Pratley, H. A. Gravel.
JOINT COUNCILS
PRODUCING DEPARTMENT

ROYALITE OIL COMPANY LIMITED JOINT COUNCIL

VALLEY PIPE LINE COMPANY JOINT COUNCIL

MADISON NATURAL GAS COMPANY LTD. JOINT COUNCIL

Pictures of the 1945 Joint Council of Royalite Oil Co. Ltd, Madison Natural Gas Co. Ltd, and Valley Pipe Line Co. were included with the 1947 Directory of Canada as being representative of the growth and development of Alberta's oil industry.

Petroleum is no respecter of climates and to the tropical jungles as well as in the frozen north, the search goes on. Shown here is a Venezuelan oil worker.
Looking like a grotesque gnome in armour this unit guards a refinery storage tank. It is a venting arrangement which keeps the pressure constant within the tank as the gasoline vapors expand or shrink, and contains a flame arrester as a protection against fire.