REVIEW IN REVIEW

Another Paladino? Bill Stephenson, author of King of the Fast-Car Set, gave up a quiet, steady job at the National Film Board five years ago for the adventurous life of a free-lancer. Since then he has been one complaint—too much traveling and adventure. In the past year he was in Ireland, Kenya, the Dominican Republic; sneak-see through Cuba posing as a civil engineer and within an hour of arrival in the Belgian Congo was labeled “a Belgian saboteur and Imperialist spy.” When we invited him to do the Bill Sadler story, Stephenson said plaintively, “Do I have to travel?” Only as far as St. Catharines, we said soothingly.

But this stay-at-home assignment turned out to be as tough as a trip to the Congo. “It was like interviewing Bennister while he attempted a four-minute mile,” reports Stephenson. “Sadler never leaves those cars. Lunch was only a 15-minute break.” When Sadler supplied him with background articles in car journals, he was not better off. Stephenson, who is as technically-minded as a Paris couturier, sat up nights translating such sports car jargon as “drift” (something like a four-wheel slide) and “slipstreaming” (a calculated type of tailgating).

Last we heard, Stephenson was planning a nice relaxing trip to South America.

On our cover: For years, Ottawa artist Virgo (pseudonym for James Forrest) studied every phase of art, from prehistoric cave drawings to modern abstractions—little realizing the trouble it was going to cause him.

He joined the Army, and got seven days’ detention for drawing a caricature of his commanding officer peppering him with his lead. He exhibited some of his work in Ottawa; one painting was set on fire and another stolen.

So far nothing has happened to this month’s cover, “A child’s idea of safety”—a mute reminder to motorists that children will soon be out of school and, perhaps, on the streets. Which must represent some kind of first for the trouble-prone Mr. Forrest.

The “Do-It-Yourself” biography: We’ve long known that Jim Rennie, Imperial’s public relations representative in Calgary, is an ex-newspaperman, won the DFC as an RCAF navigator during World War II and has been winning handball tournaments consistently for 27 years. Surely, we told him, a man with your background can send us a photo and some bright biographical material for Review in Review.

Rennie reluctantly wrote a letter (he much prefers to handle correspondence with phone calls or scribbled notes) with this helpful data: he has tried to avoid the lens-end of every camera for at least 10 years and had no trouble whatsoever in researching “The Do-It-Yourself Career of Dr. Young.”

Luckily, our photo files and Rennie’s article (see page 11) are infinitely more productive than his letters.

IMPERIAL OIL REVIEW

Keeping up with the Joneses

A layman viewing the Canadian oil business today must, at times, feel a little like Alice in Wonderland. The situation seems to get “curiouser and curiouser.”

Why—with today’s temporary surplus producing capacity—are companies still pressing their oil and gas search, not only in traditional areas but even in the Arctic?

Why do companies like Imperial invest a million dollars or more in a calculated risk (see page 18) like the Change “dry hole”?

Why—in view of the industry’s proven reserves of over four billion barrels—don’t we temporarily cease exploration?

The answer is pretty elementary to oil men: the industry has to look far ahead. If reserves were not replenished they would last only about 23 years, at the 1960 rate of production. But, of course, production will increase to meet our growing needs. So, continuous discoveries are essential, to replace the gradual depletion of existing fields, and to keep pace with steadily increasing demand.

That being the case, the time to explore for the producing wells of, say, 1966 or 1971 is now. Most of us, in our personal affairs, are hard-pressed to plan beyond our next vacation. Many businesses do well to plan their operations two or three years in advance. But in the oil industry the time lapse between the start of an exploration play and eventual production (if exploitation is successful) ranges from five to ten years. So, if the industry is to explore effectively and at the lowest cost, it must maintain orderly continuous activity.

All this activity is spurred on by competition. Few businesses anywhere are more competitive than the oil industry today. Competition extrudes all the way between the gas pump and the “live hole” (the effort to brine land in likely-looking areas). A company must continue to search for oil and gas, in both tried and untried territory. And when one company makes a discovery in a new area, competitors usually scramble to obtain land in the same area. This is simply efficient operation; you can plot potential oil-bearing formations in such areas with much more likelihood of success than in wholly unproven territory.

Recently a Toronto business writer, in commenting on this last point, wrote: “Keeping up with the Joneses is more important to a major oil company than it is to your social climbing neighbor. Besides, oil companies are more able to afford the luxury.”

More specifically: it’s really not a luxury, but a necessity. And after a necessary but costly experience like Chungo, oil companies, too, feel pains in their pocketbooks.
MEMO

To Staff:

I am concerned by the increasing incidence of absenteeism in our department during the last few months...

MEMORANDUM

To the staff

We regret to inform you that due to a shortage in business conditions, we are compelled to reduce our staff this year...

From top management down, no one in industry is immune to mental health problems, if one kind or another, any more than he or she is immune to the common cold.

Mental illness is, indeed, one of the most serious problems in terms of productivity facing industry today. The National Association for Mental Health reports that the many forms of mental illness cost U.S. industry $4 billion a year in terms of lost time and effort—exceeded only by the common cold at $4 billion. (And even colds may be related to emotional upset; it is certain that many people under psychiatric treatment seem to contract fewer colds.) No figures are available for Canada but the pattern is comparable.

Mental illness in industry may manifest itself as alcoholism, high labor turnover, employee grievances that lead to labor troubles, general irritability, poor work or absenteeism. (University of Cincinnati doctors say 75 percent of accidental short absences from work could be avoided and are attributable to mental illness.)
to only 25 percent of the employees.
And all such ills may be triggered by
one or more of four things: worries
about home matters, about one's job,
one's boss, or one's finances.
There is nothing shameful about the
situation. Companies are made up of
people; most people have some emo-
tional imbalance at times.
"It is what makes us different—and
interesting," says a Toronto psycho-
analyst. "But when stress is put on these
weak areas, trouble starts and may lead to
permanent disability."
Such people do not necessarily re-
quire elaborate treatment, but they do
require expert help in recognizing and
solving their problems. Which is why
industry is taking a new and searching
look at employee mental health.
Only a few years ago doctors called
these "quirks of human nature" and
nothing was done about them. Now they
are reconsidering, for a reduction of a
more 10 percent in the rate of absente-
ism, accidents, on-the-job errors and ill-
ness would be an important gain for any
firm to say nothing of the rise in morale.
The cost of treatment would be rela-
tively insignificant in comparison. U.S.
industry could buy 150 million hours a
year of consulting psychiatrists' time
with the money lost as a result of mental
or—as some experts prefer to put it—
"emotional" illness.
"We'd have got a lot further if we'd
spoken right from the start about 'emo-
tional illness,'" says W. Caron Jones, a
staff psychologist of the Ontario Hydro-
Electric Power Commission. "The mo-
ment somebody implies that there's
something wrong with my brain, I be-
come terribly defensive. I dare not let
this accusation go unchallenged. But if,
instead of implying that I'm crazy, some-
body merely says, 'you're terribly work-
ed up,' I don't deny this charge. In fact,
if he listens long enough, I may spend an
hour telling him exactly why I'm worked
up."
Whatever tite you give it, mental ill
health can interfere with business life in
two main ways, according to author-
ities on the subject:
— It shows up as an impairment of judg-
ment, perhaps leading to accidents, delu-
sions, inability to concentrate or to get
along with other people.
(The Wall Street Journal estimates
that psychological factors are respon-
sible for some 80 percent of industrial
accidents. And U.S. psychiatrist Dr.
Karl Menninger says that 60 to 80 per-
cent of employees who are fired failed
because of personal disagreements, not
technical incompetence.)
— It is associated with, or actually causes
illness. Alcoholism, for example, is one
such form of illness and is believed to
affect some three percent of Canada's
population. Thus, a company with
10,000 employees could expect to have,
on the average, 300 problem drinkers.
There are also "psychosomatic" ill-
nesses—real physical ailments caused,
triggered or aggravated by an emotional
problem. They may be in the form of
ulcer symptoms, allergies, migraines or
excessive fatigue.
A Toronto man who had worked out-
doors all day checking trucks at an in-
dustrial warehouse was promoted to a
desk job in a small office. After some
months he developed severe stomach
trouble, was frequently off work, was
X-rayed but had no ulcer. Eventually,
as an experiment, he was moved back
to his outdoor job. Within a few weeks his
illsusbided.
Caron Jones of Ontario Hydro tells of a
woman employee who was much
upset by the death of her husband upon
whom she had been extremely depend-
ent. She had a child, was forced to work
for a living, and was constantly torn be-
tween feelings of responsibility as a
mother and as a worker. She developed
severe headaches and was unable to
obtain any permanent relief. She was
sent to a psychiatrist and later, to hos-
pital.
"She was transformed," says Jones.
"The last I heard, she was being con-
sidered for a promotion. The chief con-
cern of the supervisor now was that she
was too self-confident and aggressive,
her shyness, excessive dependency and
headaches all disappeared at the same
time."
Employee neuroses are almost as
troublesome to employers as real phys-
ical illness. Hypochondria (excessive
preoccupation with fears of illness) leads
some workers to fill their desks with
drugs, pills and potions and visit their
health centre frequently. There are other
neurotic problems: fear of death, dread
of losing spouses, claustrophobia, and
lack of self-confidence.
Why are humans so vulnerable to
emotional disorders? W. Caron Jones
explains this in terms of needs.
"Needs fall into a number of categor-
ies," he says. "There are straight phys-
ical needs: air, water and food. These
are fairly accessible to most North
Americans. But there are psychological
needs, too, which are intangible but
quite real. And the deprivation of these
exerts a tension and a distress far greater
than the threat of physical depriva-
tions."
At our job we need a sense of secur-
ity, belonging, self-respect and recogni-
tion, as well as opportunities for chal-
lenge and achievement. If such needs
are not met, excessive tension may result.
This can lead to insomnia, lack of con-
centration on the job, irritability, stress,
accidents and various physical ills.
It means that all of us are potential
victims of breakdowns. It dispels the old
theory that those who suffer from emo-
tional or nervous breakdowns are weak

From top management down,
no one in industry is immune
to mental health problems

The common cold costs
U.S. industry $4 billion a year; emotional
illnesses run a close second at $3 billion in
lost time and effort

Mental ill health can
impact judgment and
cause accidents

Emotional stress should
carry no more stigma
than a broken leg
and the rest of us are strong. "The flow-
er of the land," says Dr. William R. Mitchell, University of Toronto psy-
chiatrist, "is just as susceptible as the
weeds."

What actually causes the final break in a man's mental health? "It is difficult
to say as it varies from person to per-
son," says Dr. Jack Fowler, Imperial's,
assistent medical director. In World
War II, some soldiers broke down with
battle fatigue after one episode of
actual combat duty. Others would stand
up to battle conditions for months be-
fore an accumulative effect was appar-
ent. In many instances, bad news from
home demoralized a soldier that his
effectiveness was considerably lessen-
ed. What can industry do to combat
this drain on people and funds?

"Change the attitude of employers, as
well as management, so that mental ill-
ess is not regarded as a stigma.

As Dr. Mitchell points out, the stigma
exists because mental illness "seems
strange, frightening and degrading,
caused by it masquerades as weakness."

"People who break a leg don't want
any time in getting to a doctor," says
Caron Jones. "Yet most of them hide
their mental problems as long as they
possibly can."

"Employ a staff doctor, nurse, psychia-
trist or psychologist. Of some 10,000
psychiatrists in the U.S.A. only about
a dozen work full-time in industry. In

Imperial Oil Review, June 1967

JUST CLOONING

WITH MARTI
VIJAELA

Several years ago Finnish-born Martti Viljamaa dodged one
of these improbable pouter-pigeon birds on a sketch pad.
Instantly they multiplied and took over his life. They hung
around home annoying his wife, kept cropping up on the
margins of his commercial artwork and, finally, 128 of them
broke out for a public debut on our April 1959 cover. Readers
promptly framed the covers, named the birds (our favorite is
"cloon") and called for more. Viljamaa, afraid that the
edulicated would go to their heads, left Canada and moved
to Sweden. But the cloons are trickling back. Viljamaa is
now an advertising artist for Scandinavian Air Lines so it's
easy to piece the story together; the birds nag him to
themselves into Canada as air freight. These illegal immigrants
may show up on our pages from time to time.
WHERE EVERYONE LIVES BY THE ROAD

by Jim Bowes

On sunny summer days, tourists scamper over the tacky asphalt of Dawson Creek’s main intersection, aiming their cameras at a lean, 10-foot milepost that sprouts in the centre of the street. Local motorists politely steer around the visitors. At other times, the jug-eared wooden post with Alaska Highway mileages painted on its lobes, has attracted ax-wielding drunks, sharpshooters who regularly shot out the gas lamp that once hung at its top and souvenir hunters who hone their knives on it. • Except for the lamp—half a dozen replacements were too many—Dawson Creek imperturbably repairs the damage. When disaster is complete, a hurry-up call brings a replacement from sign painter Ellis Gislason. For Gislason, one of the creators and the original painter of the northern British Columbia city’s famous Mile Zero post (granddad of the more modestly scaled 1,523 mile-posts between Dawson Creek and Fairbanks, Alaska) it has been more than an artistic success. In 15 years, he has sold 50,000 replicas, at $1.75 and up, to collect...
ers in Canada and the United States. If Dawson Creek’s 12,000 residents take a proprietary interest in their city’s centrepiece, it is little wonder. The “Mile Zero” post, marking the southern terminus of the Alaska Highway, is their everyday reminder that the largest centre in the Canadian north owes its exuberant present almost entirely to a roadway past that produced one of the world’s best-known roads. The city situated in a fold of the Rocky Mountain foothills, 378 miles northwest of Edmonton, never forgets the highway-construction saga.

Dawson Creek, blooming in 1940 from a shock at the end of a railroad spike, has taken on many sides to its person- ality. But the city’s economy revolves like a wheel of fortune around the grav- eled Alaska Highway. It is “the high- way” that upholds its role as distri- buting centre for an area of 180,000 square miles, transportation hub for the Cana- dian northwest and springboard for the tough and costly northern oil haul. The “highway made it,” says Don Lueck, retired town manager.

It is 16 years since the remnants of the 15,000-man construction army with- drew from Dawson Creek. Yet, even today, the nodding sag of farm village 1942 lingers. Houses and shacks of temporary construction, many only considered sometimes come true.

Sometimes success comes partly by accident. "A man could come in as an entrepreneur from Edmonton, drove to the Dawson Creek area in a crusty truck loaded with his household goods, bought spuds and truck and started a funeral parlor. Later he switched to the hotel business" says A. E. "Dick" Delcourt, local historian, who is viscous in Victoria but still pops up in Dawson periodically.

It was clear to the city planners that Dawson Creek’s most spectacular Mun- ional Algæa saga should be tied to the Alaska Highway: the rise of Brue Forsyth from truck driver to president of one of the west’s largest trucking firms is a story of a semi-retired in Pentic- "Tremendous, says Forsyth, who describes the town as a "hideous, noisy, un- fortunate" city, that has a "flawed city" to the city. Forsyth maintained that U-turns on one of the main downtown business streets were legal and permis- sible. The Montbiers said they were not, and won.

The city is 378 miles northwest of Edmonton, at Mile 42 of the Alaska Highway. The city’s temperament, its climate, its people, its location, its history have combined to form a community that is truly unique. Dawson Creek is a city of extremes, where the temperature can drop 30 degrees in a single day. Dawson Creek is a city of contrasts, where the economy is based on oil and gas, but also on tourism and fishing. Dawson Creek is a city of contradictions, where the residents are proud of their history but also want to move forward. Dawson Creek is a city of dreams, where the future is uncertain but the possibilities are endless.

In its postwar surge, the city has drawn many residents from outside the province who have been attracted by the quality of life and the opportunities for growth. Dawson Creek has become a hub for the oil and gas industry, and the city is home to many large companies that are involved in the extraction and refinement of natural gas. Dawson Creek is a city of contrasts, where the energy sector is a major driver of the economy, but also a city of conservation, where the residents are committed to protecting the environment.

In the postwar surge, the city has drawn many residents from outside the province who have been attracted by the quality of life and the opportunities for growth. Dawson Creek has become a hub for the oil and gas industry, and the city is home to many large companies that are involved in the extraction and refinement of natural gas. Dawson Creek is a city of contrasts, where the energy sector is a major driver of the economy, but also a city of conservation, where the residents are committed to protecting the environment.

In the postwar surge, the city has drawn many residents from outside the province who have been attracted by the quality of life and the opportunities for growth. Dawson Creek has become a hub for the oil and gas industry, and the city is home to many large companies that are involved in the extraction and refinement of natural gas. Dawson Creek is a city of contrasts, where the energy sector is a major driver of the economy, but also a city of conservation, where the residents are committed to protecting the environment.

In the postwar surge, the city has drawn many residents from outside the province who have been attracted by the quality of life and the opportunities for growth. Dawson Creek has become a hub for the oil and gas industry, and the city is home to many large companies that are involved in the extraction and refinement of natural gas. Dawson Creek is a city of contrasts, where the energy sector is a major driver of the economy, but also a city of conservation, where the residents are committed to protecting the environment.

In the postwar surge, the city has drawn many residents from outside the province who have been attracted by the quality of life and the opportunities for growth. Dawson Creek has become a hub for the oil and gas industry, and the city is home to many large companies that are involved in the extraction and refinement of natural gas. Dawson Creek is a city of contrasts, where the energy sector is a major driver of the economy, but also a city of conservation, where the residents are committed to protecting the environment.

In the postwar surge, the city has drawn many residents from outside the province who have been attracted by the quality of life and the opportunities for growth. Dawson Creek has become a hub for the oil and gas industry, and the city is home to many large companies that are involved in the extraction and refinement of natural gas. Dawson Creek is a city of contrasts, where the energy sector is a major driver of the economy, but also a city of conservation, where the residents are committed to protecting the environment.

In the postwar surge, the city has drawn many residents from outside the province who have been attracted by the quality of life and the opportunities for growth. Dawson Creek has become a hub for the oil and gas industry, and the city is home to many large companies that are involved in the extraction and refinement of natural gas. Dawson Creek is a city of contrasts, where the energy sector is a major driver of the economy, but also a city of conservation, where the residents are committed to protecting the environment.

In the postwar surge, the city has drawn many residents from outside the province who have been attracted by the quality of life and the opportunities for growth. Dawson Creek has become a hub for the oil and gas industry, and the city is home to many large companies that are involved in the extraction and refinement of natural gas. Dawson Creek is a city of contrasts, where the energy sector is a major driver of the economy, but also a city of conservation, where the residents are committed to protecting the environment.

In the postwar surge, the city has drawn many residents from outside the province who have been attracted by the quality of life and the opportunities for growth. Dawson Creek has become a hub for the oil and gas industry, and the city is home to many large companies that are involved in the extraction and refinement of natural gas. Dawson Creek is a city of contrasts, where the energy sector is a major driver of the economy, but also a city of conservation, where the residents are committed to protecting the environment.
offered a single meal plate on a take-it-or-leave-it basis and then burled the doors when it ran out. Civilians paid up to $5 a barrel for water at the door. With no fresh milk available in the village, parents scoured the countryside for their own sources of supply.

Bootleggers and professional gamblers arrived close behind the construction army. "It was like the Klondike gold rush all over again," says Leach. The Army kept tight rein on the troops but the undermanned civilian constabulary fought a continuing rear-guard action against the high-living construction workers. Masters weren't helped much when the village jail burned and wasn't replaced for several months.

North of giddy Dawson Creek, 10,000 men, 6,000 pieces of road equipment and 5,000 trucks unrolled the ribbon of highway. Speed was the watchword. The builders looped the road over hills instead of blustering benches, spanned mountain rivers with 250 temporary wooden and pontoon bridges, and rambled through the forest where the bulldozers found easiest going.

On November 18, 1942, nine months and six days after the first Army wave hit Dawson Creek, two U.S. soldiers eased their mud-spattered weapons car-

riety past Consul Welch, the American official at Soldier's Summit at Klause Lake in the Yukon. They had driven from Dawson Creek—and the Alaska Highway was open.

The pace in Dawson Creek scarcely slowed. Ahuml was another year of construction when the tenacious supply trail would be tonned-up and brought to highway standards. Truckers poured in from all over western Canada to join the "Santa Claus run"—a military supply haul from Dawson Creek to Whitehorse which paid a handsome $1,000-plus expenses for the round trip.

"Money didn't mean much," recalls Leach, "but a bottle of liquor (it was rationed) would buy anything up to a new truck motor along the highway."

Paradoxically, it was a tragedy of those days that laid the foundation for modern Dawson Creek. In 1943, an exploding dynamite truck killed five, injured hundreds and set a fire that sliced through the heart of the wooden business district. The U.S. government, in a property settlement, rebuilt the section to modern fireproof standards.

In 1944, the Japanese were chased from the Aleutian Islands. That was the beginning of the end for the wartime Alaska Highway epic. The U.S. Army closed its railhead camps at Dawson Creek in mid-1945 and except for a scattering of maintenance men along the highway, the troops vanished from the northwestern Population sagged to 3,700.

As citizens became accustomed to elbow-room again, they counted scene sold places from the invasion. Hundreds of Army buildings, sold at knock-down prices, provided temporary housing at a time when the need was critical. Shortly after the war, two-thirds of Dawson Creek housing was said to be a deriva-
tive, in one form or another, of surplus Army real estate. There is little left now.

Many of the Army's installations, including the waterworks system, were left as a handsome legacy to the village but perhaps the most enduring bargain was picked up by the Dawson Creek Athletic Association. The association, which co-ordinates sports activities in the community, paid $30,000 for the three quarter-sections of land occupied by the army camps during the war. As the city grew, the land became choice residential property. Some was sold. With $250,000 in assets, a 70-acre community golf course, and more land to sell when it is needed, the DCAA is one of the wealthiest community organizations in the nation.

The bonanza has been used to equip the city with magnificent recreational facilities: ice arenas, curling rink, ball park. And the results are beginning to show up. On winter nights at the handsome Memorial Arena, crowds of youngsters skied over the artificial ice on long-bladed racing skates under the watchful eye of Mrs. Pat Underhill. Former North American women's speedskating champion (and wife of Imperial Oil geologist Jack Underhill), the petite skating star has coached her charges to almost every mepot speedskating title in sight.

Geologist Underhill, incidentally, is president of the DCAA. Other Imperial men are officials of the city's minor hockey association, the Boy Scouts, the Dawson Creek golf club, the Junior Chamber of Commerce and the Dawson Creek Choral and Dramatic Society.

In emerging from its frontier cocoon and taking on such modern appurtenances as paved streets, television and split-levels, the city has almost dropped "the outside" from its vocabulary. Until new roads linked it with Vancouver and Edmonton and the Pacific Great Eastern Railway pushed north from Prince George, that was the wasteful and universal label for the rest of the world.

Now, "the outside" is discovering Dawson Creek. Last summer, nearly 40,000 tourists passed through. Many of them were Americans bent on seeing Alaska, the 49th state, but there was also a strong contingent of Canadians catching a fascinating first glimpse of their own land of tomorrow. In Dawson Creek, they say the tourist invasion has just begun.

Wes Harper, eye-witness to all the many lives of Dawson Creek, says, "The Alaska Highway will do it again. When they peave it, watch the tourists come."
fencer, inventor, author of scientific papers, and creator of "who-dun-it" (some of which pale beside his own crime detecting exploits).

"The only things Jim probably isn't expert at are art and music," says his long-time associate, R. D. Dymond, a chemical engineer, "and this may be just because he hasn't tried them."

Young's flair for explosives (he's an expert in that field, too) added a special fillip to the official opening of the new laboratory in 1955. Imperial management wanted "something different" from the traditional ribbon-cutting. Regional manager Don Mackenzie suggested that the ceremony somehow incorporate the sciences of geophysics, electronics and chemistry as they existed in the building. The resultant Rube Goldberg device that he dreamed up and Young built was, indeed, "different."

At the proper moment, Dr. Andrew Stewart, now chairman of the Board of Broadcast Governors, then president of the University of Alberta, pressed a button. This set off a small seismic explosion in a vacant field about a quarter of a mile away. The resulting shock waves, traveling underground through the earth, were picked up by sensitive equipment in a geophysical recording van parked near the lab. This in turn sent an electric impulse through a wire to copper ribbon stretched across the building entrance. In the centre of this ribbon was a small cardboard oval bearing the company's Enso insignia. The oval went up in a puff of blue smoke and the copper ribbon parted.

"This is a most interesting and entertaining substitute for a pair of sewers," said the startled and obviously impressed Dr. Stewart.

Young's friends weren't startled, of course; it was the sort of thing you'd expect from the lab manager.

"What is Jim Young's field of knowledge?" asks an associate. "Well, broadly speaking: applied mathematics, metallurgy, physics, bacteriology, toxicology, electricity, petroleum engineering, chemistry and chemical engineering."

Then, if you want to be specific, he adds, you could subdivide Young's abilities in each of those fields. In chemical engineering, for example, he is proficient in chemistry of water, analytical chemistry, forensic chemistry, hydrocarbon analysis, natural gas and LPG processing, chemical warfare and surface chemistry. . .

The really remarkable part of all this is that Young's formal education ended at high school; he couldn't afford to go to university. In his day-to-day counsel-
ing of young prospective scientists however—Young finds time for that, too—he emphatically recommends a university education.

"Doing it my way is the hard way," he says.

He was born in Mattawa, Ont., but as the son of a railroad worker, had little chance of staying there for long. By age 12 Jim had lived in 32 different towns in Ontario and the prairie provinces. By the time he reached high school he was in Calgary. He obtained his senior matriculation there with marks among the highest in Alberta for that year. Then Young launched a kind of do-it-yourself university career, reading voraciously until he was able to pass an exam which qualified him for the Association of Professional Engineers.

He took a job at the Calgary city laboratory where "we tested concrete and asphalt and carried on a kind of service lab for the public." When the manager left (Young says he had nothing to do with that) the enthusiastic new technician and one other technician ran the establishment.

Young's curiosity was too lively to be satisfied with a lifetime of concrete. During the early 30s he became involved in forensic chemistry, that intriguing science pertaining to crime detection, without which the current rash of "private eye" dramas on television could not survive. This work has taken him into many courtrooms and police stations as expert witness or consultant. In the late 30s he was asked to direct the establishment and commissioning of the forensic laboratory at police headquarters in Calgary. (Nowadays, a police sergeant, there is no formal laboratory; "we just use Mr. Young.")

Also in those early years, Young became something of an authority on water supply and sewage disposal. He assisted the city in construction of its first large filter plant and a sewage disposal system. He established control laboratories to serve the operations at both plants. Several test procedures which he innovated and evaluated are still used in many places.

Inevitably his curiosity lead him into the oil business. He entered this field as chemist to the newly-formed Alberta Petroleum and Natural Gas Conservation Board. All these activities were in addition to his duties with the city.

His consulting work included gas evaluation and analysis, corrosion inhibitors, and oil well acidizing in Turner Valley field. Those years saw the beginning of his lasting interest in all forms of gas analysis which later proved useful during his wartime scientific work and still later with Imperial Oil.

Prior to World War II he served as a reservist with the Royal Canadian Army Signal Corps and the Royal Canadian Engineers. In 1941, because of his scientific background, he was assigned to the Suffield, Alta., experimental station where top secret work was being done on explosives, chemical warfare and new equipment. Young worked on a variety of weapons, including grenades, "blockbuster" bombs and flame throwers. Then he joined a special group of Canadians, British and Americans studying such weapons in the southern U.S.A. and on a remote island in the Panama Canal area. On four occasions Young was injured while working with gases and explosives. When the war ended he was a major, in command of the chemistry division at Suffield.

Young returned to the oil business then.
Illustrations by Gerry Lazare

Joining Royalte (at that time a subsidiary of Imperial) at Turner Valley, he transferred to the parent company as research engineer, went to Calgary in 1947 and in 1955 became manager of the newly established technical service department.

Here, as everywhere else in his career, Young’s job title doesn’t cover all the things he does. He spends some time, for instance, as a one-man police laboratory, and as adviser to the Institute of Technology in Calgary. He helps universities solve technical problems, aids younger men in research and, of course, never stops teaching himself.

Recently he’s been studying the practice and philosophy of research management. Young believes that the best creative and original research is achieved with a minimum of organizational impediments and an “academic” rather than “production” approach to problems.

An associate puts it another way: “Jim has a knack of getting work out of people without browbeating them. He knows when to prod them and when to leave them alone—probably because he likes to be left alone while working on a project.”

Which is why, for example, a dedication to Young appears on the flyleaf of “The Physics of Flow Through Porous Media” written by Dr. Adrian E. Scheidegger, once a research associate with Imperial, now a University of Alberta mathematics professor. It reads in part, “... without his continued support and understanding, the writer would have had no chance even to attempt the present study...” The book, now regarded as the authority in its field, has gone into a second edition here, has been reprinted in the U.S. and was even “pirated” by the Russians.

Young is something of an author himself. He has written or collaborated on at least 100 highly technical papers since 1934. Several patents have been issued in his name. He has a complete home laboratory (including microscopes he built himself) and a fully equipped darkroom.

In his youth Young climbed some of Alberta’s ruggedest mountains but he gave up the sport when his son, James (“Red”), a student in Spencoe, took it up.

“Mrs. Young said two mountain climbers were too many for one family,” Jim explains somewhat regretfully. “Red doesn’t know what a sacrifice I made to keep harmony in the family.”

He reads everything from “The Theory of Games,” a breakdown of games in terms of complicated mathematical formulae, to crime thrillers which he says are “phony.”

Young could probably write better who-dun-its from experience. His first police case about 30 years ago involved sheer scientific hocus-pocus. During a scuffle over a maul, a Calgary woman stole her rival’s leopard skin coat and burned it to ashes in a lane. Young’s assignment from the police: reconstruct the pattern from the ashes. He did it with chemicals. “The girl charged with the theft was so flabbergasted by it all that she pleaded guilty,” Young recalls.

“However, I was equally unpopular with the other lady, since the evidence showed that the coat was a very cheap imitation leopard skin.”

Solving that far-from-eternal triangle did him no good the night last year when his wife reported him “missing.” Young had been called to provide expert testimony in a court action in Banff. He expected to be home for dinner, but the case dragged on into the evening. It was 1:00 a.m. when Mrs. Young went into action to retrieve her spouse.

At that time Jim was speeding toward Calgary, seated next to a husky Mountain, when the police radio crackled:

“Calling all cars; calling all cars. Woman just called up. Says her name is Young and her husband works for the police. She doesn’t know what case he is on but it has something to do with explosives. Anyone know anything about the guy?”

The reply was heard by every RCMP cruiser in the area. “This is Car 11. Please advise Mrs. Young we have her husband. We should deliver him at his door about 2:00 a.m., or soon after...”

There was a short pause, then a mischievous whisper just loud enough for all receivers to pick up... “... if we can sober him up!”

Young hasn’t quite lived down that night yet but as an accomplished prankster himself, he doesn’t complain. When Imperial opened an electronic computing and data processing department, Young devined a gift for the new department’s head, Ken Marble. It remains a cherished item in the new offices, where highly-trained engineers, mathematicians and technicians deal with those present-day monsters, the electronic computers. It is a modest desk jet: a plate of glass under which is an abacus (that primitive but effective calculator of the Chinese laundry man). A small plastic slide rule is included and on the base of the whole contraption is the inscription: “If in trouble, break glass!”

New medical director appointed

Dr. Gordon A. Sinclair has been appointed medical director of the company succeeding Dr. R. G. Birrell who has retired under the company’s amnesty plan.

A native of Nelson, Ont., Dr. Sinclair is a graduate of the University of Toronto, a certified specialist in internal medicine and a diploma in occupational medicine. Upon the outbreak of World War II he left his private practice to serve with the Royal Canadian Army Medical Corps, attaining the rank of brigadier. He was mentioned in despatches and awarded an O.B.E. In 1947 he joined Imperial as physician-in-chief in Toronto and three years later was appointed assistant medical director.
Everybody loves a success story. Consequently we often hear of the wells in the oil business that "came in", but seldom of the "dry holes" that didn't.

But finding oil is an expensive, risky business, particularly in the case of a "wildcat"—a well drilled in unproven ground. For instance, there were 508 dry holes drilled in western Canada in 1960 exploratory drilling program. This is the story of one of those failures—"Imperial et al Chungo", to give it its formal name.

Chungo was started in January 1960, in the Rocky Mountain foothills 175 miles northwest of Calgary. It was part of the search that Imperial and other companies are carrying into this remote territory, to establish additional crude oil reserves and to find natural gas.

The area was not only unproven but in places almost unapproachable—timber, steep slopes and tire-chewing rock. To get the 910 tons of equipment into the site, Imperial's crews made 89 trips—each 56 miles long—over forestry roads and one company-built gravel stretch. The road-building bill ran over $200,000. For the $1 million rig, with its 147-foot derrick, capable of drilling 15,000 feet, there were maintenance and amortization charges.

When the big diesel engines began their monotonous 24-hour-a-day seven-day-a-week roar, the bit began chewing into the mountain rock. Bits are made of extra hard steel, but even steel eventually wears down when ground against rock. Chungo used up 276 bits, at a cost of about $250 each. More than 7,000 feet of casing was used to line the hole and this cost about $50,000.

From time to time core samples were obtained by running in a special bit which cuts out cylindrical lengths of rock. The well-site geologist studied these and other cuttings for clues to oil-bearing formations. At Chungo, core drilling cost $20,000.

Meanwhile, access roads needed servicing; so did trucks and other equipment. This cost about $20,000. Gasoline and diesel fuel took another $72,000. The 23 men had to be fed and paid; the food bill alone amounted to $600 a week.

Drilling continued until November 22. Then, after 297 days and 13,150 feet (2 1/4 miles), drillers reached the bottom of the prospective oil-bearing formation and there was still no oil. Imperial called it quits. The total bill was $1,111,000.

Chungo was a flop, but no well is entirely a failure. It gave the company information on the composition of the geological formations that could have been obtained in no other way. If it leads one day to the discovery of a producing well in the region, the million-dollar wildcat will not have been in vain.
Natural gas today supplies 14 percent of Canada's energy as well as many basic petrochemicals. Here's how this young member of the oil family is growing up.

If an Edmonton housewife found her neighbor cooking with natural gas she wouldn't give it a second thought. But if she found her firing her oven with perfumes, alcohol, synthetic rubber or medical drugs, she'd probably send for a psychiatrist.

Yet the analogy isn't entirely ridiculous: perfumes, alcohol, drugs and many more are derivatives of the wonder substance, natural gas. The late American scientist Dr. Gustav Egloff once said, "All synthetic substances known to organic chemistry can be derived from natural gas—and there are over half a million of them."

For years crude oil has dominated the petroleum scene. Natural gas, to most Canadians outside Alberta and southwestern Ontario, has been the infant in the petroleum family.

Now, with accelerated gas production and export, it's turning out to be a full-fledged partner and even a competitor of crude oil. To calculate annual petroleum production in crude oil terms alone is no longer sufficient; natural gas is produced by the same companies and is competitive in its destination. In 1960 crude oil production was about 540,000 barrels per day. But oil and natural gas production ran about 745,000 barrels per day, expressing natural gas energy content in crude oil terms.

Over the next 25 years, at least, natural gas and crude oil will continue to be Canada's main suppliers of energy. And as much as science can now produce commercially from natural gas many of the things it can produce from crude, we're going to hear much more about the one-time "silent" partner.

So... what is natural gas?
It's as unpredictable as a woman. It comes out of the ground, sometimes with crude oil, sometimes not; usually as invisible gas, but sometimes so wet that it looks like fog. Generally it is highly inflammable. But sometimes it is predominantly carbon dioxide which is used to extinguish fires.

Sometimes it smells like rotten cabbage (when its hydrogen sulfide content is high). But generally it is almost colorless and odorless; commercial fires add an odor so consumers can detect leaks.

Because its molecular structure—which can be described as being strong in a variety of ways—can easily be varied, chemists can change it into almost anything from motor fuel to artificial flavoring. For example, they can turn butane (which has four carbon atoms in each molecule and 10 of hydrogen) into rubber (which can have as many as 200,000 carbon atoms and 400,000 hydrogen atoms per molecule).

Even natural gas' composition is variable. The main ingredients as it comes from the well are methane, ethane, propane and butane. But their proportions
vary, according to the source of the gas and the underground pressure.

Methane is the lightest, largest part, sometimes forming as much as 90 percent of the composition. It is the main component of the gas which you burn in your stove.

Ethane is the gas from which many substances are derived—although butane and propane are also used for synthetics. Propane and butane—compressed and sold in cylinders or containers—are familiar to campers, and home owners in rural areas not served by gas pipe lines.

Over 175 million barrels are sold throughout the free world every year. These gases are even used to fuel automobile engines. Edmonton uses 300,000 gallons of propane a year in buses.

Besides these four principal ingredients natural gas also holds several other nameless amounts: helium (used in rocket fuel, and for inflating dirigibles and aircraft tires), hydrogen sulfide, pentane, hexane, and heptane.

Not only is natural gas one of the most useful of natural resources, it is one of the most abundant. World reserves are unknown mainly because of inaccessible fields in Russia. But one U.S. economic survey estimates them conservatively at about 900 trillion cubic feet. That's enough to supply six million average-sized homes with gas for heating and cooking for one thousand years.

Canada stands third in gas production, after the U.S. and Russia. Canadian known reserves amount to 30.7 trillion cubic feet. Geologists say these could go as high as 400 trillion cubic feet.

Natural gas has been found in nine provinces (so far not in P.E.I.). British Columbia has large gas fields, as has Alberta (Pincher Creek and Reynold's Pumping, for example). These are gas fields, solely, but a sizeable proportion of natural gas is also produced in conjunction with crude oil. Such is the case with most of Imperial's production, at present.

In either case there is little physical or engineering difference in the drilling. When the well "cosies in," the gas is separated out (if produced with crude oil) and piped away to a plant for cleaning and purifying.

The plant consists of a number of small towers where the gas is literally "scrubbed"—that is, such impurities as free-solvent hydrogen sulfide are washed out. The gas then separates into three categories. First, dry gas (methane and ethane) which are used in heating and petrochemicals. Second, butane, a highly volatile product for such uses as adding to refinery gases to give quick winter starts and propane, used as a liquid fuel. Third, carbon dioxide, which is used at refineries to help produce conventional oil products.

These three categories are known as natural gas liquids. These are extremely important to industry and, under the terms of Canada's new national oil policy, are to be included with crude oil in reckoning annual crude production.

A few months later leaves the plant the "dry" gas is a roaring sheet of fire beneath some industrial furnace hoods, instead of miles away, or is burning gently at a pressure of five ounces per square inch on a kitchen stove gas companies marketed to domestic and industrial customers more than 287,003,000 cubic feet of this Trans-Canada pipeline, which runs 2,920 miles from Alberta to Montreal, carried 110,170,668,000 cubic feet. Some was exported to the U.S.

About three-quarters of all Canadian petrochemicals come from natural gas or natural gas liquids. (The rest is from refinery gas, produced during the processing of crude oil). Many familiar products choice of raw materials depends on which source of supply is most economically located in relation to the plant. Major usage of natural gas is relatively new, although it has been used in limited and quantities for more than a century. As far back as 1821 some houses in the village of Fredericton, New York, were lighted by natural gas from nearby swamp. About 1883 Pittsburgh began to use natural gas for its furnaces.

In Alberta, about the same time, some CPR well drillers near Medicine Hat accidentially hit a gas pocket, and started a fire which burned their Derrick. They eventually used the gas to heat their section house. From this arose one of the first oil and natural gas operations in Canadian history. Medicine Hat sits on a huge gas field. Heating and cooking costs are lower than in most other Canadian cities. Once the Hat left its 265 gas street lights on, day and night; it was cheaper to burn them burning than to hire a man to put them out.

For many years though, natural gas was considered a nuisance. It blow up in the faces of the cigar-smoking entrepreneurs of early oil fields. They burned it off in flares when they could. As the years passed it became an important fuel, most notably in World War II. It gave the Allies an edge over the Germans. Lifeline, because pentane from this fact in a notebook, where it lay forgotten for years. When war broke out, the British re-investigated, found polyethylene ideal for insulating cables for the first radar sets, and set up a pilot plant to produce it. From then on, polyethylene surged on to fame. With new uses springing up almost overnight, one would think that the world could use natural gas, or its products, as fast as they can be produced. That's the hope, at least.

As at present Canada only uses 287 billion cubic feet a year. An aggressive export program takes 112.5 billion cubic feet a year. There are pipe lines from northern British Columbias to the state of Washington, from southern Alberta to Montana, and a new one going in from Alberta to California. Another line is now in operation to supply the mid-west U.S.

Inside Canada, there are 21 major gas pipe lines (including the Trans-Canada) many of which can be used to link with United States markets. Much is being done to develop markets inside Canada, and natural gas is now available to over 10 million Canadians. But the big hope for the future lies in other industries, where this cheap, clean fuel can compete against other Canadian forms of energy in large quantities. Even though some economists feel that other energy forms will eventually play a bigger role, natural gas and natural gas liquids are the prime energy sources of the moment.

At present natural gas supplies only 14 percent of our energy needs. The Royal Commission on Energy reported in 1958 that during the next 20 years this proportion could increase to 50 percent. In addition, increases in petrochemical production (which has grown 18 percent a year for the last 10 years) will also contribute to this use of gas.

This isn't to say that the demand for crude oil and its products will grow. The time is not far off when Canada and the world will be drawing on all available energy sources, and natural gas will help meet this demand.

It may be years before you let out the natural gas heated water in your natural gas made bathtub, climb into natural gas material clothes, jump into a car with natural gas powered body, and, with natural gas fuel, drive to an office made from natural gas synthetics.

But with crude oil's versatile partner, anything's possible.
King of the fast-car set

Canada's Bill Sadler devotes his life to designing, building and racing automobiles. He's the boy wonder of the sports-car world

by Bill Stephensn

The sports-car world is a highly stratified society in which each owner looks out from his racy two-seater with well-bred but unmistakable disdain on the driver of any other older, lower priced or less stylish sports car. And all members of the fraternity gaze on owners of "Detroit iron" (conventional cars) with the same contempt that Model T men once bestowed on the one-horse shay.

But to whom do sports-car fanciers look up? If they are Canadians and wise in the racing jargon of "drift", "spin out", "slip-streaming", displacement and rear axle ratios, there is only one logical an- swer: Bill Sadler, of St. Catherines, Ont., owner of the Sadler Car Company, a mechanical wizard, the man who perhaps knows more about sports cars than any one else, and the only Canadian to build and drive racing cars—the big brothers of the sporty road jobs. Sadler also sells his cars all over North America to the most knowing aficionados in the field.

If the hopes of thousands of enthusi- asts are filled, Sadler will almost cer- tainly put the first Canadian-designed, Canadian-built sports car on the roads—a custom-built, semi-mass-produced gem which will surpass anything now burning up the highways.

William George Sadler is a crew- topped, carefree-looking 29-year-old— the sort you might expect to find in the box seat at a baseball game or in black tie at a theatrical first night. But Sadler has little time for spectator pastimes. His burden—and his devotesthished-for purpose in life—is what he calls his "total involvement" with cars. To Bill, the world is an asphalt track, sometimes going around in circles, at other times heading straight for the horizon, but always alive with cars of every make, model, disposition, defect and virtue—all of them crying out for improvement.

"I've made a few improvements already," he modestly says, "but it pains me when I think what could be done if we had more time."

People who appreciate sports cars think Sadler's contribution to the business is somewhat more than "a few improve- ments." They pore over the technical data that he supplies as consultant to the trade magazine, Track and Traffic. They phone him up at odd hours with prob- lerns on coxing more performance out of their motors. And some of them, as they hustle past his factory in a conver- ted machine shop alongside the Queen Elizabeth Way, "rev" up their motors in salute to the master.

So indifferent to this idolatry is Sad- ler, however, that he now does not even drive a sports car. His current choice for tooling between home and factory is a bundle of Oshawa ironwork called a 1961 Chev Belair coupe.

"I like comfort in ordinary driving," is Sadler's simple explanation of this heresy. "The big cars provide it."

The big Chevs not only provide him with comfortable driving but also with the 250 h.p. engines for his racing cars, which he has personally driven to victory against some of the world's finest racers. He chooses Chev engines, he claims, because they give the most power for the weight. The 250 h.p. are boosted to 375 by the time Sadler is through.

Outside of the engines, tires and stock parts which it would not pay to make, the major components of his cars are put together by Sadler and his staff of three specialists: bodyman Mike Snagars, welder Harry Ross and general mechanic Chuck Richardson. They work with supreme skill (often using their Combined Cuts in lieu of blueprints) and a fierce inten- sity (sometimes seven days a week; some- times from morning to one a.m. with 15- minute meal breaks.)

Sadler's dream of manufacturing a dis- tinctive Canadian sports car on a pro- duction-line basis, seems at times to be eluding him. But it is never far from his mind. Keeping it there are dealers all over North America who keep bugging him for franchises for his not-yet-built machine.

"I don't have the design ready just now," he says, "it will depend on my thinking when we're ready to go. But I'm planning for about 10 cars a week, to retail at about $4,000. We could do a real job for that."

The quartet's big current project, on which they work 12 to 16 hours per day, is the construction of two identical racing cars for Torontonian Chuck Rathgeb, vice-president of Canadian Comstock Ltd. The cars, known as "Comstock Sadlers Mark V", have to be ready for track tests by June 1. Their first big pub- lic test will come on June 24, when Sad- ler and Rathgeb will race the Canadian machine against the cream of the world's drivers—including Britain's Stirling Moss—at the opening of the $400,000 Mon-
in his own cars, Sadler aims for light weight combined with stability. It is for its weight and strength that he is now sold on aluminium, which he and his crew hammer out by hand for the car bodies. Infinite care and loving hand-work go into each phase of this operation, the shape of the car being a critical factor. (The Sadler cars look, to a layman, somewhat like an oversize cigar). The exhaust gases on the Mark V escape via eight pipes behind the driver's head, four on each side. If it weren't for the noise these unassisted, uncovered pipes make, the Mark V might take in the roads.

Sadler is also careful to make his cars comfortable, believing that at 170 m.p.h. — the speed he thinks the Mark V might attain at Mosport—even slight physical discomfort could mean the difference between victory and defeat. He covers the seats to the body, padding them with foam rubber.

Another all-important factor is good brakes. "If two of us are racing for a curve, and I have better brakes, I can pull ahead of him and slam on the brakes at the last moment, while he must start slowing well back."

The Mark V, unlike some racers, has its own self-starter. Like all racers, however, it has the steering wheel on the
right, because tracks run clock-wise and it is better for the driver to be on the inside. It has two vents, though rules do not permit a passenger when racing. It has no fan belt for cooling the motor. The wide air-scoop at the front, plus a water-filled radiator, do this chore. Vents are also left in the fenders for cooling tires and brakes.

Although the Mark V will participate in night-racing, it has no extra lights, as required.

"We haven't figured out yet just where to put them," laughs Sadler, "but we'll work something out."

Sadler, whose normal conversation is low, cultured and devoid of the jargon used by many sports car people, believes he has been somewhat misused in the role the public seems to have assigned to him. His connection with the ordinary sports car fraternity is, at the moment, only an academic one. He would like to participate in more of the Sunday afternoon or weekend rallies which take place all over Canada. But he has no time. His first amateur endeavor in five years was during the Winter Rally in Ontario this February, when he placed 28th out of a field of 200, driving an Austin 850.

"We took a wrong road," is his only excuse.

Sadler claims that in the trade he is known as a "safe, cautious driver". This is probably true, since he has never had an accident. Driving to him, is relaxation. Tense, jittery, and admitting to having an ulcer, he knows few other ways to slow down.

"I don't intend to compete forever, though," he declares. "If I could find another Canadian to drive my cars to their maximum potential, I'd give it up tomorrow."

At the moment, there's no such man.

For Bill Sadler and other sports car fans across the country, June 24 will be an epic day. Sadler will give his two Comstock Sadlers Mark V their first public test, racing against Britain's top driver, Stirling Moss. The occasion: the official opening of the $400,000 Mosport race track near Peterborough, Ont., one of the potentially finest racing circuits in the world.

Just a little over a year ago, Alan Bunting, now secretary of Mosport Ltd., outlined the idea of the top-notch track.

"The time is ripe," said Bunting. "It's to be done at all, it must be done this year while enthusiasm for racing is at a peak."

Some $400,000 was raised from members of Ontario sports car and motorcycle clubs for land and road work, while businessmen promised to contribute after the club had built a track. Last October on the 450-acre parkland site bulldozers gouged out a circuit which resembles the shape of a football kicked in on one side and pinched together at one end. The track, paved last month, rises and falls over a 2.4 mile course, up 80 feet at one point; down 70' in another. Straight runs go into right- or left-hand curves, a series of tight bends or, at the south end, into an 180-degree hairpin bend with 1.7 banking on a 160-foot radius. This leads north on the "return" journey to the pit into the longest straight run, 1,450 feet.

Over the past winter the area and its facilities have been designed. Vantage points for spectators have been selected on the rolling countryside; six parks set aside to park 15,000 cars and a paddock planned which will berth 140 racing cars. On the drawing board too are a control building and tower, a modernistic clubhouse with members' enclosure, rest rooms, refreshment stations (with tables and hot dog stands) and, for the future, an 18-hole golf course and swimming pool.

The $60,000 control building and tower pictured on this page will sit by the 900-foot-long pit "straitas" at the north end of the field. It will include space for the electronics system, radio and press-lounge, administration offices, hospital, lounges for participants, accommodation for judges, showers and rest rooms.

For the 12,000 members of Canada's more than 90 sports car clubs, Mosport is another fine field for "club" meetings. And for all motor racing enthusiasts it's bait for the biggest game in the field, the Formula 1 Grand Prix machines from Europe—by Jean Dumard.