Fast man with a quiver
It's not easy interviewing interviewees, Tom Alderman discovered while researching his story on business recruiters (see page 2). Many, who themselves conduct 200-500 interviews yearly on university campuses, averted by reflex answer a question with another question. A 100-interview-a-year telemarketer like Alderman needs all his wits to keep his interviewees from going astray. It brought to his mind a schoolyard game called 'conkers,' in which players with chestnuts tied to the ends of strings threw them at each other's chestnuts. Each chestnut was so many years old, depending on the number of other chestnuts it had cracked, and asked from years you'll just have to try out that one yourself.

Accordingly, Alderman wisely matched himself against a 50-interview-a-year telemarketer, out-questioned him easily, then won after more experienced interrogations. First, 100-interview telemarkers, then 200- and 300-interview men fell before his inquisition. Only a 400-year-old insidious executive provided small resistance, firing off four quick quibbles before Alderman recovered with a rapid volley of questions. Now he established 4,080-interview men. Alderman avoids publicity and stays mainly to himself, refusing to shave seemingly innocent questions like

"What is your top priority?" he asked. "You advise young interviewers trying to build reputations that the best way to win the interview game is not to tell your prospects you're playing it. By the time they read in Review in Review how they've lost all their hard-earned interviews, it'll be too late to ask Who? Where?"

Cooler facts: the button goes between cut and boot 300-interview men fell before his inquiries. Only a 400-year-old insidious executive provided small resistance, firing off four quick quibbles before Alderman recovered with a rapid volley of questions. Now he established 4,080-interview men. Alderman avoids publicity and stays mainly to himself, refusing to shave seemingly innocent questions like

"What is your top priority?" he asked. "You advise young interviewers trying to build reputations that the best way to win the interview game is not to tell your prospects you're playing it. By the time they read in Review in Review how they've lost all their hard-earned interviews, it'll be too late to ask Who? Where?"

Cover: V. K. Antimony

Editor: James Knight
Assistant Editor: Tom Alderman
Art Director: Mark Redmond

Published simultaneously in English and French by Imperial Oil Limited, 111 St. Clair Avenue West, Toronto, Ontario. Excerpt material may be reprinted or used on radio or TV without special permission. Credit lines and acknowledgment will be appreciated. The Imperial Oil Review contents are based in the Canadian Petroleum Industry.

What does well-equipped roughneck carry in his baggage these days? For one thing, maybe, a bottle of sea sickness pills. Here, as all over the world, the oil hunt is going under water on to the continental shelves. The magic word in exploration today is 'offshore'.

Offshore drilling is not in itself a new concept. Long ago, for instance, companies began producing crude oil from a rich field under Lake Maracaibo in western Venezuela. More recently the search has gone into the Gulf of Mexico, the North Sea, the Irish Sea, the Bay of Biscay, the Adriatic, the Mediterranean, the Persian Gulf, and off the coasts of Nigeria, India, Australia and West Pakistan.

Last summer seismic and core drilling crews were at work on the Grand Banks fishing grounds off the coast of Newfoundland. The program was a joint project of Imperial and Pan American Petroleum Corporation with the latter as the operator.

The December Review will carry an eyewitness report on this undersea search. But why go to the trouble and expense of oil exploration offshore when Canada's oil reserves already are estimated at more than six billion barrels and our natural gas reserves at 43.4 trillion cubic feet?

One reason is that oil reserves aren't always where you want them. Canada as far west as the Ottawa Valley still imports crude oil by ocean tanker from abroad because western Canadian crude can't be shipped that far east overland at competitive prices. A discovery off Newfoundland could conceivably change that situation.

Furthermore, enormous though our reserves seem to be, they do not represent an infinite supply. Excluding the tar sands and heavy 'black oil' deposits of northern Alberta, our present reserves would last only an estimated 23 years at the present rate of production. But by 1985 Canada expects to produce more than a million barrels of crude per day for Canadian refineries and almost 700,000 barrels a day for export—almost double the present rate of production. And we'll still need to supplement this by 750,000 barrels a day for eastern refiners, either from imports or eastern Canada discoveries, and about 150,000 barrels a day in imported finished products.

If and when new oil fields are discovered in commercial quantities, it generally takes anywhere from one to five years to convert the discovery into a full-fledged producing field. This is why companies are busy now, trying to build reserves at sea as well as in the west, the Arctic, Ontario, on Anticosti Island in the Gulf of St. Lawrence—anywhere, in fact, that there's a chance of finding oil. In Canada a million barrels of oil products don't last long—one day, to be exact.
How to Get Yourself a College Man

By Tom Alderman

No aspect of a large corporation's business is taken more seriously than its recruitment of university graduates. Companies agonize over their manpower requirements years in advance, trying to estimate not only the number of qualified people they will require now and in the future, but the kind as well. When the actual recruiting takes place every year on campuses across the country, the men who do the hiring look at each applicant as a potential company executive, and treat the moment with the solemnity it deserves.

But in this atmosphere of purpose and dedication, things sometimes go hilariously haywire. Take the occasion this time last fall when a young Imperial Oil personnel man named Bernard Major—out recruiting potential company employees at a Quebec university—walked through the wrong door.

"Come in, you're late," sang out the recruiter for a large electrical organization. And before Major could explain, he was invited to a place among a dozen undergraduates. Ten minutes later, without opening his mouth, Major walked out with a job offer as an electrical engineer.

Recruiters expect to leave a little more of their money behind on campus this season. If salary scales follow past patterns, the ante will jump at least three percent. And more companies are planning to pay her. Since 1959, one of the last years of business recession in Canada, when Imperial hired 480 graduates, the number of campus visits by industry has been rising about 15 percent yearly. Imperial’s going after more than 150 this season, making the company one of the top hitters in Canadian industry. But recruiting coordinator Mel Holmes will be surprised if his team can catch them all. Last year industry recruiters who could get three-quarters of their quota were reasonably satisfied. Imperial Oil got about 95 percent by supplementing its campus effort with "off-the-street" hiring during the summer months.

But it's more than a question of bodies and numbers. The annual recruiting scramble brings the student in a point of decision which can affect his whole life. For the hire is a part of a process that started years earlier and will continue years into the future, involving the very corporate health of his company. Recruiting has many aspects of the circus and the slave auction, but its reality goes much deeper.

At Imperial, for example, it is a serious effort to find solutions to situations that are still theoretical. How many geophysicists (or mathematicians) will the company need in 1975? What is the probable supply of chemical engineers over the next five years? To what extent will changes in refining and chemical techniques affect the need for engineers and chemists? Will Imperial need men (and manage) operations that don't even exist today? So, for the scramble that begins about this time each year, veteran recruiters have been planning long in advance. At least a year ago, visiting times were reserved at university placement offices, where business officially courts the undergraduates. Head recruiters had already consulted their company departments years ago to decide this year's requirements. (IBM forecasts its manpower needs by computer. The machine decreed 248 for last spring.) Then in brief truce, the companies phone among each other to find out what each expects to offer graduates when the open season starts. "Naturally, most everyone ignores base rates," says

Industry uses every wile but girlish tears when it tries to engage a grad

Recruiters expect to leave a little more of their money behind on campus this season. If salary scales follow past patterns, the ante will jump at least three percent. And more companies are planning to pay it. Since 1959, one of the last years of business recession in Canada, when Imperial hired 480 graduates, the number of campus visits by industry has been rising about 15 percent yearly. Imperial’s going after more than 150 this season, making the company one of the top hitters in Canadian industry. But recruiting coordinator Mel Holmes will be surprised if his team can catch them all. Last year industry recruiters who could get three-quarters of their quota were reasonably satisfied. Imperial Oil got about 95 percent by supplementing its campus effort with "off-the-street" hiring during the summer months.

But it's more than a question of bodies and numbers. The annual recruiting scramble brings the student in a point of decision which can affect his whole life. For the hire is a part of a process that started years earlier and will continue years into the future, involving the very corporate health of his company. Recruiting has many aspects of the circus and the slave auction, but its reality goes much deeper.

At Imperial, for example, it is a serious effort to find solutions to situations that are still theoretical. How many geophysicists (or mathematicians) will the company need in 1975? What is the probable supply of chemical engineers over the next five years? To what extent will changes in refining and chemical techniques affect the need for engineers and chemists? Will Imperial need men (and manage) operations that don't even exist today?
promisingly in his reading room.

An inky-footed recruiter sometimes risks more than just good relations. Not long ago, a University of Toronto engineering professor noticed a shadowy figure hunched

The People

high stakes. For every graduate hired, they spend about $350 each in travel expenses and recruiters' salaries. So an engineer's first job in life, says Mr. McMillan, is to make a first contact with a high-powered professional. They could be persuaded to join the wrong company for the wrong reasons.

Such a misstep can be painful to the company as well as the recruit; it means lost time for them both—the recruit will leave with an unpleasant memory of the place, and the company will find itself further away from the candidates of the new men in whose hands its future lies.

A few years ago, recruiters wanted important people in other offices to put pressure on a student pursuing on campus. But the temptation of a slight head start—and the resulting recruiting decision—has pushed up the starting time to mid-October—a month after registration.

Most college faculties, to prevent being overrun at all hours of day and night, give official starting times. To appear at Western before Jan. 15 has been considered by facult

Loans or Teams

Lesser companies may send only one or two recruiters, but large outfits like Empire Oil may, in a special situation, send as many as 10 at once to a university. "We're such a large organization," says Holmes, "that few men can discuss the company in real detail. So we send special

Loner recruiters vary. Some companies, like Imperial, prefer one recruiter at a time to probe an undergraduate. Others look for free information. Naturally, so-and-so rarely lands anyone. On their appointed days, the recruiters arrive at the placement office, where they're

shuttled off to various interview rooms to await the students who've signed up for half-hour interviews. With so many recruiters, a company vice-president

Bradford. Bradford recalls seeing a company vice-president

"Who is that fellow?" he demanded.

"He's a director of that company," said the professor.

"Well, tell him if he doesn't clear out in five minutes, he's lost his job," said the professor.

"I'm a director of that company," said the professor.

Bradford. Bradford recalls seeing a company vice-president

"Who is that fellow?" he demanded.

"He's a director of that company," said the professor.

"Well, tell him if he doesn't clear out in five minutes, he's lost his job," said the professor.

"I'm a director of that company," said the professor.

Bradford. Bradford recalls seeing a company vice-president

"Who is that fellow?" he demanded.

"He's a director of that company," said the professor.

"Well, tell him if he doesn't clear out in five minutes, he's lost his job," said the professor.

"I'm a director of that company," said the professor.

Bradford. Bradford recalls seeing a company vice-president

"Who is that fellow?" he demanded.

"He's a director of that company," said the professor.

"Well, tell him if he doesn't clear out in five minutes, he's lost his job," said the professor.

"I'm a director of that company," said the professor.

Bradford. Bradford recalls seeing a company vice-president

"Who is that fellow?" he demanded.

"He's a director of that company," said the professor.

"Well, tell him if he doesn't clear out in five minutes, he's lost his job," said the professor.

"I'm a director of that company," said the professor.

Bradford. Bradford recalls seeing a company vice-president

"Who is that fellow?" he demanded.

"He's a director of that company," said the professor.

"Well, tell him if he doesn't clear out in five minutes, he's lost his job," said the professor.

"I'm a director of that company," said the professor. companies use the pattern interview, asking the same set questions each time. Others, like Imperial, do give an easy-give-and-take of information. Bill Telephone has developed a free

The People

Imperial

Seeks

Because of the oil business, wide reading activities, Imperial hires graduates from a vast range of disciplines. Most of its grad

Few growing companies have enough

employees. Imperial's producing department alone hires 14 kinds from such diverse areas as petroleum engineers. Nine kinds go into manufacturing, including civil, chemical, electrical, industrial, mechanical and metals. Surgical engineers and engineering physicists, science and chemistry graduates. Marketing, the department responsible for product

sales and distribution, claims for civil engineers, chemists and technicians among others to work with customers. Research predicts chemistry and chemical engineering gradu

ates, and chemical products selects mainly from chemical engineers for petroleum engineering, and engineering science and chemistry.

Co-operators and business administration grades find places in any of 12 company de

partments. For marketing, for example, they direct market research, evaluate market

and sales trends and computers, they'd process data

flow on company operations. For coor

dination, they'd change accounting methods, they would make apposite economic conditions as they apply to the oil business. And for producing, they'd amend the most effective ways of de

veloping and maintaining oil production facilities.

Art grades, who usually come to Imperial with previous experience, fill vacancies mostly in marketing (in advertising, sales promotion and public relations) or research (in development of new products or chemical products (which directs the company's petrochemical activi

ties). Physicists and mathematics graduates program the company's growing systems and computers work, or aid the producing department. Accountants, they'd make appropriate adjustment in their

ground. And graduates in agriculture can help Imperial develop oil product markets for the farm.

The People

Imperial

Seeks

Because of the oil business, wide reading activities, Imperial hires graduates from a vast range of disciplines. Most of its grad

Few growing companies have enough

employees. Imperial's producing department alone hires 14 kinds from such diverse areas as petroleum engineers. Nine kinds go into manufacturing, including civil, chemical, electrical, industrial, mechanical and metals. Surgical engineers and engineering physicists, science and chemistry graduates. Marketing, the department responsible for product

sales and distribution, claims for civil engineers, chemists and technicians among others to work with customers. Research predicts chemistry and chemical engineering gradu

ates, and chemical products selects mainly from chemical engineers for petroleum engineering, and engineering science and chemistry.

Co-operators and business administration grades find places in any of 12 company de

partments. For marketing, for example, they direct market research, evaluate market

and sales trends and computers, they'd process data

flow on company operations. For coor

dination, they'd change accounting methods, they would make apposite economic conditions as they apply to the oil business. And for producing, they'd amend the most effective ways of de

veloping and maintaining oil production facilities.

Art grades, who usually come to Imperial with previous experience, fill vacancies mostly in marketing (in advertising, sales promotion and public relations) or research (in development of new products or chemical products (which directs the company's petrochemical activi

ties). Physicists and mathematics graduates program the company's growing systems and computers work, or aid the producing department. Accountants, they'd make appropriate adjustment in their

ground. And graduates in agriculture can help Imperial develop oil product markets for the farm.

The People

Imperial

Seeks

Because of the oil business, wide reading activities, Imperial hires graduates from a vast range of disciplines. Most of its grad

Few growing companies have enough

employees. Imperial's producing department alone hires 14 kinds from such diverse areas as petroleum engineers. Nine kinds go into manufacturing, including civil, chemical, electrical, industrial, mechanical and metals. Surgical engineers and engineering physicists, science and chemistry graduates. Marketing, the department responsible for product

sales and distribution, claims for civil engineers, chemists and technicians among others to work with customers. Research predicts chemistry and chemical engineering gradu

ates, and chemical products selects mainly from chemical engineers for petroleum engineering, and engineering science and chemistry.

Co-operators and business administration grades find places in any of 12 company de

partments. For marketing, for example, they direct market research, evaluate market

and sales trends and computers, they'd process data

flow on company operations. For coor

dination, they'd change accounting methods, they would make apposite economic conditions as they apply to the oil business. And for producing, they'd amend the most effective ways of de

veloping and maintaining oil production facilities.

Art grades, who usually come to Imperial with previous experience, fill vacancies mostly in marketing (in advertising, sales promotion and public relations) or research (in development of new products or chemical products (which directs the company's petrochemical activi

ties). Physicists and mathematics graduates program the company's growing systems and computers work, or aid the producing department. Accountants, they'd make appropriate adjustment in their

ground. And graduates in agriculture can help Imperial develop oil product markets for the farm.
pays}, says the U. of T.'s Bradford. 'Any recruiter who, for example, tries those curious surprise questions like 'What do you want out of life?' almost gets laughed off the campus. Or he finds every student answering it in the same, almost as if they were passing on the answer to each other. And they are.'

The student grapevine, properly tended, can also aid a company immensely. At Hydro-Quebec, recruiting supervisor René Gagnon explains how he got 50 of his 75 grad quota: 'Some companies try to impress a student with dinner with the president. But that'll be the only time the grad will probably ever see the president. We take our prospects to our cafeteria. Lunch: 75 cents. Let the man see what it's really like at Hydro-Quebec.'

Aside from the 75-cent lunches, Gagnon feels one of the big appeals of a public utility like Hydro-Quebec is its appeal to a young man's sense of social service. 'Big companies talk about their profits,' says Gagnon. 'We talk about what we're doing for Quebec. I'm sure young men everywhere today want more than statistics about a product's market penetration. They want a job that serves society as well.'

Relying partly on the appeal of social service, outfits like Hydro-Quebec, Ontario Hydro and the Civil Service Commission of Canada (Canada's top tier, taking in about 500 graduates yearly) have usually been pretty good at meeting their targets. Industry has lately been trying hard to regain this lost ground. Talk at many interviews about company potential has been replaced somewhat by references to what industry is doing to serve society. And to get this story across, the egdehead has in many cases replaced the glib talk. He'll tell a sociology major about corporate responsibility to the community; a government major about the role of business in a democracy; an English major about the distant image of the businesswoman in modern literature.

'Ve don't have employment interviews anymore,' says Pruteer and Gamble's Robert Moore, 'we have dialogues.'

With this more intellectual approach, industry is also combating the onslaught of the graduate schools. Within two years, according to a recent Canadian Universities Federation report, graduate enrollment will reach 33,000—almost eight percent of Canada's university population. 'And these are usually the cream of the grad crop,' says Mr. Holmes. 'All of them are under the university's influence. With professors' salaries so good these days, many will probably stay on at university, and be lost to business.'

The increasing competition, not only within business but from without, has forced a few companies to prospect for foreign students and Canadian students studying abroad. Imperial's producing department, short on geologists, campaigned last winter through Britain, and came back triumphantly with a dozen graduates in tow. To the same token, U.S. companies have raidcd Canadian campuses, offering salaries Canadian industry can't match. A U.S. tourist descended on the U. of T. last January during the university's annual three-day blitz tour and engineering undergrads. During that time, the faculty's close-up shot and students met industry uninterested by classes. Had the U.S. companies arrived the first day, their salary scales could have thrown everyone else's out of kilter.

'But we couldn't find interview rooms for them till late on the third day,' says Bradford. 'By then it was too late for students to recruit Canadian companies about the U.S. rates. The U.S. outfits got a few, but they didn't force the Canadian rates up unnecessarily.'

Taet vs Truth

On the average, a company interviews about 10 prospects and makes offers to four to get one recruit. Yet it must be careful even with those it rejects. 'The reject letter has to be phrased just right, or you'll hurt the student's feelings,' says Holmes. 'After all, he may have influence with other students on campus.' One company phrased its rejection letter to 100 McGill prospects so tactfully last year that they all thought they'd been accepted.

'It was,' says McGill placement director Rowan Goleman, 'a bullva thing to straighten out.'

Despite all these sophisticated techniques, almost 10 percent of graduates in Canada leave their first jobs within a year, according to an annual University Counseling and Placement Association survey. The number who switch within five years is more than half. However, most recruiters don't see this heavy turnover as a reflection of their procedures. 'I despise all attempts to make it a boodgaof calculation,' says Ontario Hydro's Keith Weaver, 'recruiting is still a subtle and complex art. What it comes down to is one man's guess about how another will perform.'

To predict more accurately how a recruit will turn out, many companies are relying on large summer work programs for undergraduates, when students and companies can get a chance to look each other over. 'As late as a few years ago,' says Slesko's Alex Brown, 'a company was playing the hero by giving any old summer job. But now we've got to provide not only jobs, but meaningful jobs. Then the student will be encouraged to come back with you when they graduate.'

Imperial's summer work program has been going extremely since 1946, when the company first started recruiting on a full-scale basis. It hired about 370 students last year for the summer season. The average 20 percent of Imperial's recruits have worked for the company during the summer. 'But that's not all we get out of it,' says Robert Lansky, the company's Quebec recruitment coordinator. 'Even those who can't come to work with us for one reason or another will tell their friends Imperial is a good place to work—if they've had a good summer experience.'

With the student shortage expected to continue, companies are seeking new talent sources constantly. Many are visiting diploma-grading technical schools like Ryerson Polytechnical Institute in Toronto, Imperial grants about two dozen recruits yearly from these institutes. Other companies, like IBM and Bell Telephone, are finding uses for grads not expected to stay long, like single female graduates.

Fair vs Feul

But some companies hardly bother recruiting at all. Last year one oil company asked students around the campus which prospect Imperial was interested in, then merely offered them $25 to $80 a month more. A few companies, convinced that graduates come too high-priced, and that marks aren't necessarily an indicator of future performance, are taking on more drudges.

'But the facts remain,' says Mr. Holmes, 'there are fewer and fewer self-made men who start as office boy and work their way to the top. In this complex, fast-changing age, once and once of a company's top management are university graduates.'

Holmes feels that companies on campus recruit not only for the moment, but for the future. 'We may lose a man to another company when he graduates,' says Holmes. 'But if he's ever restless, and he recalls a good interview with us, he'll be inclined to look us up. At that point, we get a man more inclined to settle down.'

But the recruiting season itself sets a strict time. Soon after the companies leave the campus, the placement director is swamped all over again with wires, letters, and telephone calls requesting interview dates for the next recruiting season. 'If anyone talks to me about the peace and quiet of campus life,' says McGill's Rowan Goleman, who shepherds 275 companies about the campus each year, 'I'll hit him over the head with a meteor board.'

APPOINTMENTS IN THE NEWS

J. Warren Flanagan has been appointed a director of Imperial Oil. Mr. Flanagan, born in Toronto, graduated with a master's degree in chemistry from the University of Toronto in 1943. He spent three years in the navy before joining Imperial's research department at Sarnia as a chemist. In 1950 he moved to Toronto to become assistant coordinator in the manufacturing department. Four years later, he transferred to Calgary as assistant manager, then manager of crude oil purchasing. He was made assistant manager of the coordination and economics department in 1967, taking over as manager in 1960. Early this year he was made assistant general manager of the chemistry department. On September 1st he held until his present appointment.

A. George Moreton has been named to succeed Mr. Flanagan as assistant general manager of the chemical products department. Mr. Moreton graduated in 1943 with a bachelor's degree in chemical engineering from Queen's University. After three years service with the RCAF, he returned to Queen's to get his master's in chemical engineering. In 1947, he joined Imperial's engineering division of the manufacturing department at Sarnia. After assignment to Sarnia, Edmonton and Toronto, he was appointed assistant manager of the engineering division at Sarnia in 1963 and 1964 manager assistant in the manufacturing department in Toronto. Last year he was named new venture development coordinator, a position he held until his present appointment.

James G. Livingstone has become business development coordinator, a new position carrying on the basic responsibilities of the former new ventures coordinator. Mr. Livingstone graduated in chemical engineering from the University of Toronto in 1942. That year he joined Imperial as a chemist in the manufacturing department at Sarnia. He moved to the engineering division, and was named chief process engineer at Sarnia in 1955. After a term as assistant superintendent in the Winnipeg refinery, he was appointed assistant manager of the Sarnia coordination and economics department. Mr. Livingstone was named assistant general manager of the manufacturing department in 1966, and has held his present appointment since September 1st, 1965. He holds his present appointment since September 1st, 1965.
Five simple steps to a complete understanding of the mysteries of OCTANE

plus five more pieces of information for people who like to be even twice as well informed

by James Knight

It's all very simple, really. All you have to know is that:

1 Your car's engine gets its power by burning gasoline mixed with air in the cylinders. A spark from the spark plug ignites the fuel which, as it burns, expands and forces the piston to move. In the stylized cylinder at left the fuel mixture enters via the orange valve, is ignited by the white spark, and, while it burns, forces the turquoise piston down, thus turning the purple crankshaft. When the piston comes up again, the green valve opens to let the exhaust gases escape. The movement of the piston makes your car go.

2 To get the most power out of the burning fuel, the engine compresses the mixture before the spark plug ignites it. The greater the compression, the greater the power will be, because the expansion, on burning, will be correspondingly larger. By the way, the compression ratio of a car's engine is just a way of measuring the squeeze a piston puts on fuel when it compresses it. If the piston squeezes the mixture to one eighth of its normal volume, the compression ratio is eight to one.

3 But compressing the fuel heats it up (compressing anything heats it up, for that matter; just try squeezing the hand of the next pretty girl you meet and see how the temperature rises in your vicinity). If squeezed too hard, the fuel has a tendency to explode all at once instead of burning evenly, gradually, and smoothly to produce a steady, powerful push on the piston. A sudden explosion can break the piston, but it provides precious little usable power in the engine. Usually, it just goes 'knock' like a hammer hitting the piston. That's called engine knock, and brings us close to octane. Everybody wants more power, but they don't want engine knock. So—

4 The oil companies make gasolines that will burn evenly and smoothly under greater and greater pressures. The more pressure and the higher temperature a fuel can withstand without exploding, the higher its octane rating. That word, octane, comes from a fuel called iso-octane. "Octane" means it has eight carbon atoms, and "iso" indicates their arrangement in the molecule. Iso-octane is so resistant to knocking that it was once labelled 100, in the belief that nothing could be better than that. Another fuel, heptane (hept: seven carbons), is so knock-prone that its rating is zero. Mix half heptane and half iso-octane and you get a fuel with a rating of (surely you've guessed) 50! Actually, nobody puts iso-octane and heptane in their cars; they're just reference fuels by which the knock ratings of gasolines can be measured. What the oil companies do is—

5 put chemicals like tetraethyl lead in the gasoline. Tetraethyl lead makes the gasoline burn smoothly, even at high temperatures and under great pressure. In this way, knocking is avoided. Within limits, the more lead you add, the higher the octane rating of the fuel, and the more suitable it is to high-compression engines. High-octane fuels can also be produced by mixing components having a naturally high octane rating with straight-run gasolines of a lower rating. Without even going into airplane fuels, you can get special commercial automobile fuels today with octane ratings as high as 103, and experimental fuels that go to 110, which just proves that motor fuels today are far better in anti-knock qualities than was once thought possible. Esso Extra's octane rating ranges around 100, depending on your geography; Esso is between 90 and 96, also depending on where you are (see steps 6 to 10, below). That's all you really need to know. The rest is interesting enough, but it's not actually necessary. Still it might be handy when conversation lags to know that—

6 the warmer the day, the higher the octane you need. If the temperature goes up 20 degrees, the octane need may go up by as much as three. But—

7 the higher the humidity, the lower the octane requirement. A humidity rise from 40 to 50 percent at 85 degrees F. decreases the octane by one. That's why the car seems to run better when it's damp outside. At the same time—

8 engine deposits increase the octane need, because they interfere with heat dissipation and they take up space in the cylinder, thereby increasing the compression ratio and automatically calling for a higher octane fuel (see step 3, above). Other additives—phosphorus compounds for example—are put in high-octane fuels to modify the formation of deposits.

9 Advancing the spark or increasing the amount of air in the mix also increases the octane need, but—

10 altitude decreases it. Therefore, for best performance, knock-wise, take a spin on a cool dampish day on a good high mountain, and prepare yourself for a reputation of being knowledgeable about gasolines.
What burns bright, burns bright, and sells gasoline?

by OTO WAGNER

That tiger! As everybody must be aware by now, he turned out to be irresistible. Four-year-olds tucked his tail in the waistbands of their shorts; the bigger kids twirled them like wampum; teenagers took them for cravats; housewives bought them to line their floor cloths; and captains of industry suffered them to dangle from the doors of their big black limousines.

Since the campaign's debut on May 18, the slogan turned up in court, in newspaper columns, in the House of Commons. Anti-slogans bloomed by the lungs of rival dealers, and withered while the tiger took the lion's share of the market.

The tails turned up at sales conventions, golf competitions, and congregations of clergy. The beast himself turned up in plush, glass, fleece, cardboard, cotton, vinyl and fiberglass. He is celebrated in song, in story and in countless parodies of poems.

And can he sell gas? Results were well beyond anybody's expectations, but we shouldn't have been surprised. That foxy tiger with the earnest expression on his, well, foxy face, had already grizzled his way through the United States and 14 countries of Europe, boosting sales in the wake of his high-octane tiger tails. Wherever he went, reaction was instantaneous and predictable; immediate acceptance, followed by a rash of newspaper comment, accompanied by a surge in sales. Everywhere the campaign was the same: same whistling tiger, same tiger-in-your-tank slogan, same tiger tail gimmick. The only difference in the Canadian campaign was the fact that the first 800,000 tails were given away free; in all other countries they had been sold.

Here, those 800,000 tails were snapped up in two days, and suppliers began to go mad trying to fill orders for more. To meet the demand, suppliers drafted the biggest army of home-sewers ever to work on a single project in Metropolitan Toronto to turn bolts of tiger-striped plush into tails. 'At one time, we had as many as 750 women working at home on the tails,' said supplier Harvey Katz. 'We had cars on the road the whole time, picking up finished tails and rushing them out to meet order deadlines.'

One of the suppliers' headaches was Imperial's insistence on quality tails. As one of them said: 'We had to sew them all inside-out, then turn them around on a machine, so the seams wouldn't show.' At one point home-sewers ran out of the plush (the mill in Bradford, Ont., simply couldn't produce it fast enough) and while more was being flown to Toronto via air freight from the United States, they had to fall back on a different kind of plush with a slightly duller finish. Chances are, the dull ones are now collector's items.

Before the campaign is over, suppliers expect to have made between 350 and four million tails, enough to frosten four out of every five cars on the road. By that time, they will have handled tiger T-shirts, tiger sweaters, tiger drinking glasses, blow-up vinyl tigers, stuffed cuddly tigers, tiger pajama bags, nodding tigers, wind-up tigers, directional-signal winking tigers—everything, in short, but the real thing, which lives in Asia and crops up in swamps, deserts, jungles and snowy mountain tops. The Eno tiger is almost as wide-ranging. He crops up in court (a Mimiico, Ont., mag-

iterate told a man accused of shaving his fat through a glass door: 'Somebody must have got a tiger in your tank'); in Parliament (where, among others, both the Conservative's G. D. Clancy and NDP's Douglass Fisher used it to make debating points); and in almost any newspaper you care to mention.

Columnists climbed on the tiger like it was a bandwagon, quoting jokes:

(He: I crossed a tiger and a parrot. She: What did you get?)

(He: I don't know, but when it talks, I listen). Reporting John (British Transport Minister Tom Fraser, opening a new highway: 'There is little point in having a tiger in the tank if there is a donkey at the wheel'), and doing parodies of William Blake's poem (Tiger, Tiger, burning bright, in the forest of the night).

Most of them found the tiger an engaging beast, but there were some objections. Earl Damade, news editor of Marketing magazine, asked: 'Couldn't it have been a Canadian animal?', and in all apparent seriousness suggested the beaver as a substitute.
Oil's Last Frontier

The Northwest Territories is the only area in Canada that is largely unexplored as far as oil is concerned. While the Arctic has been explored for centuries, the Northwest Territories remain largely uncharted territory for oil companies.

With the Arctic Ocean a step behind, the need for new sources of crude oil remains. The government of Canada is working to encourage oil exploration in the Northwest Territories, with the goal of finding new sources of oil to meet growing energy demands.

In the Northwest Territories, there are few major oil fields. The largest, the Mackenzie Delta field, is located on the coast of the Arctic Ocean. However, the region is believed to have significant potential for new oil discoveries. As a result, many companies are investing in exploration and development efforts in the area.

The government of Canada is also working to ensure that oil exploration in the Northwest Territories is conducted in an environmentally responsible manner. This includes implementing strict regulations and monitoring programs to minimize the impact of oil extraction on the region's natural environment.

Overall, the Northwest Territories holds significant potential for the discovery of new oil reserves. As the global demand for oil continues to grow, the region is expected to play an increasingly important role in supplying the world's energy needs.

But it won't be for long.

The Arctic has been explored for centuries, but the Northwest Territories remains largely uncharted territory for oil companies. The government of Canada is working to encourage oil exploration in the region, with the goal of finding new sources of oil to meet growing energy demands.

In the Northwest Territories, there are few major oil fields. The largest, the Mackenzie Delta field, is located on the coast of the Arctic Ocean. However, the region is believed to have significant potential for new oil discoveries. As a result, many companies are investing in exploration and development efforts in the area.

The government of Canada is also working to ensure that oil exploration in the Northwest Territories is conducted in an environmentally responsible manner. This includes implementing strict regulations and monitoring programs to minimize the impact of oil extraction on the region's natural environment.

Overall, the Northwest Territories holds significant potential for the discovery of new oil reserves. As the global demand for oil continues to grow, the region is expected to play an increasingly important role in supplying the world's energy needs.

But it won't be for long.
This is what happens to authors: people get them mixed up with their heroes. Readers think Ian Fleming really was James Bond. And was Mike Hammer the hero and Mickey Spillane the writer, or vice versa? As for Thomas Chandler Haliburton’s house in Windsor, N.S., even the people who live in Windsor call it the Sam Slick place.

Who’s Sam Slick? He’s Canada’s first major literary creation, and a century ago he made a brilliant, opinionated Nova Scotia high-flying judge as famous as Somerset Maugham is today. Sam Slick was a shrewd, brilliant, opinionated Yankee peddler who spoke an outrageous slangy dialect and packed more holes in the society of a century ago than Tom Thun can do today. He traveled the Nova Scotia countryside selling cheap clocks for $40 apiece (marked up from $6.50) and commenting on the furies of the day. His creator, Thomas Haliburton, used him to lash out at everything from imperialism to Confederation, and Slick became a household word. He spoke in such a rich, memorable slang that his phrases imme-

A century has somehow switched the doors to Clifton. Tourists enter by the former back door (left) instead of the front (above).
Clifton was really a split-level. The dining room, study and living rooms (Halliburton would have called them drawing rooms) were on the main floor while the bedrooms were half a flight up and the kitchen half a flight down. Most of the furniture in these rooms belonged to Gen. Wolfe and was brought to Clifton by a former tenant. The big fireplaces have separate areas for bread and pastry, and heated the water for the house.

Clifton became part of the language, and are heard everywhere even today. Sam Slick was the first person to say it was raining cats and dogs, to make speed as quick as a wink, to observe that every dog has his day, to point out that he wasn’t born yesterday, that some people drank like a fish, that others were a slick in the mud, and to call the best people the upper crust.

The character who spoke these spicy phrases is best known as the tall, duck-throated, slip-sounding type drawn by Charles W. Jefferys for a 1915 edition of Halliburton’s work. Jefferys’ drawings, 102 of them, lay in the New York vaults of the publishing company for 40 years after plans for the edition collapsed. They were finally published in 1956 after Imperial Oil bought them to add to its Jefferys Collection. An incident that would have caused Halliburton to howl with laughter occurred when the drawings, labelled ART, were stopped by Canadian customs officials and accused dutiable on the ground that mere black and white drawings were not real ART.

Thomas Halliburton, gently born, carefully educated, a judge of the inferior court of Nova Scotia, colored more pungent expressions than any other Canadian before or since. He also made Sam Slick the pattern of the unlettered sage—a boasting, bragging, spitting, swaggering natural man who knew more than his betters, and he set the stage for characters like Dickens’ Sam Weller, Twain’s Huckleberry Finn and Donna’s Mr. Dodsley. And he created this engaging rogue in surroundings of unsullied gentility.

Clifton, Halliburton’s home on a hilltop overlooking Windsor, might have been the model for a grandee’s home of the period. Halliburton built it in 1836, and from then until he left it in the 1850s for England,
where he died 100 years ago, he convivial Windsor society on a lavish scale. He and his wife, an English girl from Clifton, a sub-
urb of Bristol, planned and laid out the gardens that surrounded the house, located walks through the thin woods, placed benches where views could be observed, and created romantic little nooks. They filled hollows and leveled hummocks to smooth out the ground and create what a contemporary called "one of Windsor's most stately vistas."

The other stately villas are either gone now, or degenerated into apartments and boarding houses. Clifton itself went through a number of surprising changes. It became, under the ownership of Senator Ezra Churchill, an even more glittering social centre where concerts were held on the lawn on Dominion Day, and a celebrated Irish soprano was paid the unheard-of sum of $400 to give a recital. A retired sea captain named W. H. Smith turned it into a hotel called The Ship Slick House, built a rambling add-

The original Sam Slick clock (left) was
made by Ely Terry in Plymouth, Conn. It
still keeps time, but doesn't strike. Haliburton
wore his stories around it, writing them in
the study at right where all the furniture ex-
cept the tall-top table with the select pine
cover belonged to him. The pasted portrait
over the fireplace is of Judge Haliburton.
A funny-looking boat is helping to bring prosperity to our Atlantic fishing trade by a revolutionary process: it catches more fish, of the right kind, faster than anybody ever thought possible, in all kinds of weather, at any season of the year, in what passes for silken luxury in the front-bitten, horn-handed Canadian fishing industry.

Blue Waters is the name of the boat. She is a little thing among the ocean-going crowd, with a tall and graceful bow to clear the tumbling sea, and a manehound crow's nest from which to watch. But though her bow is all beauty, her stern is all business: it's heaped with winches and booms and the homely tools of the trawler's trade. What Blue Waters loses in looks, however, it makes up in action. She is the first Canadian-designed fishing vessel to seize the glamorous bluefin tuna and also scoop haddock and cod from the depths with a stern trawl. Towing her nets over the stern enables her to fish in much heavier weather; the arrangement of her equipment and machinery gives the crew better protection while they scoop the fish from the net over the side and into the hold; winches haul the empty net aboard over the stern, freeing the crew of the back-breaking job of pulling it over the side.

Blue Waters is versatile, efficient, obedient and, when the going gets rough, she is dependable. Her 92-foot length is crammed with such sophisticated marine equipment as radar, a depth finder that can also spot schools of fish, long range navigation system, automatic pilot, sea scanner, high-frequency radio-telephone, direction finder, remote controls, electric-hydraulic steering, hydraulic winches and maneuvering jets. It cost $385,000 to build and equip Blue Waters.

Last summer, while big game spectators howled at the giant bluefin tuna with the traditional baited hook out of dozens of fishing ports, Captain Medford Matthews was hunting them too. But he was sitting on the bridge of the diesel-powered Blue Waters, somewhere off Cape Cod or the New Jersey coast, surrounded by electronic gear and steering straight for a whole school of tuna on instructions radioed from a spotting plane with the school's surface ripples in its sights.

With split-second timing Blue Waters 'dropped' her stern by cutting loose a 20-foot, diesel-powered skiff to speed away over one end of the net while the skiff takes off in the opposite direction and runs the seine full circle round the churning school of migrating fish. The seine is immense—three times as big as a heaving seine; its half-mile length and 300-foot depth could easily smother a brace of aircraft carriers. When the tuna are caught, cables at the bottom pull the seine shut to form an enormous mesh bag full of fish which may weigh from 15 to more than 100 tons. Because tuna fishing can be done only in calm weather when the ripples from the school of fish are discernible, the net can be hauled in over the side and the men can move more freely as they 'bait' the fish with dip nets into the holds. All the remaining nets are brought in over the boat's stern.

The whole operation of setting the seine is over in minutes. While Blue Waters' eight-man tuna crew wrestle the gleaming catch into the bristling holds and prepare the 20-ton seine for the next set, Medford Matthews cautiously estimates how much longer he must remain on the tuna grounds to reach his 140-ton capacity and head home. Though the bluefin he nets are smaller than the 900-pounders the sport fishermen seek, they range from 20 to 200 pounds. The Cape Cod Tuna plant at Eastport, Maine, buys the blufins and smaller skipjack tuna for $345 a ton and trucks them 40 miles across the U.S. border from Campbello. But the season lasts only from July to early September and each trip to the tuna grounds takes at least 10 days. A man must make as many as he can; last year Blue Waters made six.

Blue Waters and her sister ship Green Waters, under Stanley Savage, are the first Canadian boats to fish tuna commercially on the Atlantic coast. But they fish for more than tuna alone; instead of being limited by size and gear to a few spots of fish, at some of the smaller wooden boats are, the stern trawlers can range the roat year round wherever fish are available. When Blue Waters completed her first tuna season in 1963, she spent December fishing herring north of Newfoundland, and last winter trawled the Nova Scotia banks for haddock and cod. Such versatility means cash for the Campbello fishermen; last year Blue Waters grossed between $135,000 and $140,000—about 40 percent of her initial cost, and much more money than Medford Matthews ever expected the boat to make.

But only three years ago Matthews and Stanley Savage were deserting men. Every decent day they used to sail their bright white heaving boats out from splendid, sea-
wee-bearded swallows, fighting against the tidal trickery of Passamaquoddy, and by nightfall. They had spent their lives fishing for herring on the Bay of Fundy when, sud-
ter, as a number recall, the closing of fish plants in nearby Lubec, Maine, put an end to their livelihood. For them, the small boat fishing was gone: they could undertake deep
sea fishing in ocean-going vessels or else quit the only business they knew.

Their case was tragic but commonplace. It followed the general lines of the conflict in which thousands of Atlantic coast fishermen during the past 10 years had found their traditional livelihood threatened unless they could adapt rapidly to bewildering changes in the demand for fish. New processing techniques put fish on the counters of every supermarket on the continent, but the de-
mand didn’t make the fishermen rich. It made them obsolete. The new demands of the supermarkets forced suppliers to make commitments for very large amounts of fish as long as six months in advance. The fish plants passed these new demands along to the fishermen, who were never geared to delivery dates and precise volumes—they worked by the weather, and by the fish run, not by the order book. Those fish plants that couldn’t fill the orders at the right time and in the right volumes with the right kind of fish lost their orders and had to close up. The fishermen could keep on catching fish, but with the fish plant closed they had no place to sell them.

To meet the new demands, fishermen would have to fish farther out to sea, with larger vessels, capable of operating around the clock, in all seasons and in nearly all kinds of weather. There were other con-
siderations: young fishermen were less will-
ing to accept the traditional hazards and discommodities of fishing as unpalatable. In a single decade, New Brunswick had lost a fourth of its fishermen and fish plant workers to easier jobs elsewhere. Somehow the new ships must make life easier for the crew.

However, smelt fishing vessels strong enough to withstand Atlantic storms and no
tral at greater depths, had never been built in the Atlantic provinces. Since the
romantic days of the great fishing schooners, the deep sea fishery had diminished and the emphasis shifted to inshore fishing for herring and lobster. Such work needs only small wooden boats of traditional design, built with the adze and saw of native ship-
wrights. Even the druggers, which essen-
tially are small trawlers using an old style of gear, were all built of wood.

Tern trawlers were what the industry needed, and they resembled the old style trawlers and fishing draggers as a jet plane does a crop duster. Tern trawlers are a British invention and Finty L, built at Aber-
dens in 1956, was the prototype for further British trawlers and the massive Russian fishing fleet which each year works the banks off Newfoundland and Nova Scotia. Where the older trawlers and draggers pull the cone-shaped trawl from points on the side of the ship, stern trawlers tow it directly over the stern. To remove the fish they pull the entire trawl aboard over a stern ramp. Tern trawlers are much more efficient, they afford the crew better protection from the weather while they’re working, and can therefore fish in much rougher waters.

But those European stern trawlers, which must cross the ocean, were much larger than anything needed by fishermen in the Atlan-
tic provinces. The first clue that it was possible to build a stern trawler small enough to be profitable in coastal fishing came when Louis Chenard, New Brun-
swick’s deputy minister of fisheries, read about a small Norwegian ship in a British paper. Chenard set out for Europe in 1961 and found the Norwegian trawler at Aale-
und. He brought the plans back to Canada with him and set about looking for someone to build an adaptation of them for the New
Brunswick Fishermen’s Loan Board. By a coincidence, the man who won the contract was Chemod, also from Aaleund, a 33-year-old manufacturer named Jens Moe. Moe set up Bathurst Marine Ltd. in Bathurst, N.B., in November, 1961, with a payroll of 15 men. Eight months later he watched Madame Louis Robichaud, wife of the province’s premier, christen Canada’s first stern trawler, La Reine du Golfe.

On the Caspian coast of New Brunswick, which legends say is often visited by mighty ships guided by souls from another world, the new steel fishing trawler was like nothing ever seen before. Her 84-foot length was divided into comfortable crew’s quarters in a high forward section like the back of a whale; amphibious was the bridge resembling a streamlined control tower; and astern was the business end with the structure for hoist-
ing the trawl set crumrine like the handle of a shopping basket. Nevertheless she quickly vindicated Louis Chenard’s foresight.

In four short trips out of Shippegan, under 34-
year-old Captain Lorenzo Noll, his five-
man crew landed 475,400 pounds of fish—
as much as the old 55-ton draggers had been landing in seven months.

La Reine du Golfe was only the beginning for Chenard and Moe and the construction of modern steel vessels for the growing deep sea fishing industry of the Atlantic prov-
inces. Shortly after Moe launched the first of the six stern trawlers his firm built in Bathurst, four more were built from another European design by the Saint John Ship-
building and Dry Dock Company. Mean-
while Bathurst Marine, relocated in George-
town, P.E.I., is building six more, and Halii-
fax Shipyards also has orders for six. The Fisheries Research Board of Canada has an experimental stern trawler under construc-
tion at Port Weller Dry Docks Ltd. in St.
Catharines, Ont., which will seek methods of improving deep sea trawling. And last spring Blue Water and Green Water were jointly by the Golden Scour, a 170-foot-long $1,600,000 tuna retainer of 750 tons capacity, built by Davie Shipyblding Ltd. in Laun, Que. These modern vessels are as significant for Canada’s Atlantic fishing industry as mech-
anization was for farming.

Yet one of the most important incentives in this impressive development wasn’t in-
volving primarily for the benefits of fisher-
men or the fishing industry. It was the federal government subsidy to shipbuilders begun in 1961 as a means of assisting Cana-
da’s ailing shipbuilding industry, but it meant that Ottawa paid the builder half the

cost of constructing the new steel boats. With the fishermen’s loan boards in three provinces financing another 40 percent for fishermen who can qualify, only a 10 per-
cent down payment is required from the prospective owners.

Matthews and Savage are pleased with the performance of these rugged boats. When the Blue Water was fishing off northern Newfoundland in 1963 she ran into one of the worst winter storms of the century. Winds of 120 miles an hour turned the sea into a savage nightmare that smashed and swallowed ships: the Ferret’s freighter Davola sank with 10 of her 29 crew members, and the Newfoundland coastal freighter Mary Pousle went down with six of her seven men.

The storm swept all four Atlantic provinces with winds of hurricane force; it wrought a 43-foot fishing boat off Wedgeport, drove a Lebanese freighter aground on the Magdala Islands, and disabled two other fishing boats—the trawler Acadian Neptune, and a scallop dragger out of Lunenburg. As the storm’s height mounted seas bombing over the Blue Water’s bridge and rolling under her keel made the depth finder useless. She fought the storm for five hours, but made port on her own when it died away.

“Groovy and shaken we were,” said Men-
no Matthews, “but we were all grateful to have this boat and, thank God, still to have our lives.”

In the old wooden ships men wore clumsy
slickers against the weather and hand-
helded the heavy net over the fishing
sides. The net was then piled on a deck
already cluttered with machinery and gear.

On steel trawlers a winch pulls the net
above the stern; with the boat facing
the weather the men can dress comfortably and
work freely. As the net comes in they fold it for the next set.

Fishing is still hard work. Men use small
‘trailing’ nets to scoop fish from the sea
beside the boat and dump them in the refrigerated fish hold. The engine
scene is hauled aboard over the stern.
Saskatchewan’s High-Society Sodbusters

They brought Chippendale, Tally-Ho! and Grand Opera to the bald prairie, but it didn’t take

In 1882, a visionary Englishman named Capt. Edward Mitchell Pierce took to his head to build a new London in Saskatchewan. He didn’t make it, of course, but he had an awfully good try. The place he chose was a spot 60 miles southwest of Moosomin, then the end of the CPR line. He called it Cannington, after his village in Somerset, and the post office added the word Manor, to distinguish it from Cannington, Ont.

Pierce persuaded several highly civilized English families to join his venture, and the result was as wildly unlikely a page as history is ever like to see. For a few height years Cannington Manor enjoyed the highest society in the territory of its time. The houses those English gentlemen built might have been lifted out of an English county, or a volume of Jane Austen. Their furniture and furnishings were the marvel of the territory, and every stick was freighted by ox cart the 40 miles from Moosomin.

The life the people lived matched their houses and their goods. The three Beckton brothers, for instance, were “typical blond Englishmen in cover coats and light-colored hats with field glasses over their shoulders.” Their “farm” contained a racing stable, a gatehouse, a broodmares’ barn, foxhound kennels, and a game house for cockfighting (though the birds all froze the first winter). Cannington’s race track was sold to be the first steeple-chase track in Canada; it had a water jump as well as brush jumps, and the meets were attended by French nobility who had settled at nearby Whitewood.

The artistic life flourished too. There was a band, a glee club, a 30-voice choir that presented an oratorio at Easter, dramatic...
CANNINGTON MANOR. AN ENGLISH SETTLEMENT FOUNDED BY CAPT. E. M. PIERCE IN 1882.

TO THIS DISTRICT CAME A NUMBER OF ADVENTUROUS YOUNG ENGLISH GENTLEMEN, ENCOURAGED BY PIERCE, TO LEARN WESTERN FARMING METHODS.

BY 1887 A SMALL BUT COMPLETE VILLAGE HAD GROWN UP AROUND THE CHURCH, BUT GRAVIDLY DISAPPEARED WHEN THE PROMISED RAILROAD FAILED TO PASS THROUGH THE SETTLEMENT.

noticed church flag in arrow. Red Cross of Saint George on white background with four green maple leaves, one in each corner, and other plaque above pew which stated:

EDWARD MICHLL PIERCE
BORN AT MERriott, SOMERSETSHIRE, ENGLAND
MARCH 27, 1832
DIED AT CANNINGTON MANOR N.W.Y.
JUNE 20, 1888.

row notice in church vestibule that school house at roadside entrance to village site will become small museum. Decided to pass up school in order to visit one of two great manor houses remaining in district. One in fairly good condition but lies several miles east of site. Other in bad shape but west of site in direction of home. Since sun nearly over yard arm and Regina 150 miles away, decided on another house.

Followed gravel road flanked by groves of white-trunked birch and poplar, broken by occasional flash of white-clouded magpie, to open gate with ‘No Trespassing’ sign, to drove right in. Drove through fair depth of woods and then into clearing where house-like Hewlett Manor House stands—three stories high. Looks like elegant boarding house in lumber mill town. But spacious grounds and crumbling stone barn and carriage house still hint of ‘stately home’.

In fenced-off enclosure saw two young cows busy nuzzling big mobile machine with some kind of meat that passed through big hooves to feed him surrounded by white-faced Herefords. Stumped some Herefords to get attention of one of lads. Succeeded. Young lad is Ted Hindmarsh, grandson of one of original Cannington Manor settlers. He gave me key to Hewlett Manor, then returned to gooping Herefords.

Inside, rooms spacious but not very—plenty of off walls and tracked into sagging floor, nails roken and hammers broken here and there. Remorns everywhere of deserted elegance. A sad, sad sight. Clippings from London Illustrated News and other English periodicals pasted on some walls, many of St. Rev. Hewlett Johnson, Red Dean of Canterbury. Maybe 20 rooms in house, including many for cowbell. Did not venture to third floor because of unwinding condition of stairs.

Ted Hindmarsh said owner Arthur Hewlett died a few years ago away from home and heard. Hewlett directed his remains be cremated, ashes brought back to manor house and scattered over tennis court. Visited tennis court—cast depression in landscape. Round small framed-in area with plaque that reads:

Arthur Hewlett’s house, from an early photograph. The house is dated 1888.
The Learning Page

CAR DRIVING TIPS

It may not be too long before you can set off on a long car trip into strange country with a guarantee that you can't get lost. A British firm is experimenting with a radio-sized box adapted for ground use from a bomber's navigation system. On the face of the box is a five-inch screen on which a section of road map is projected. Two compasses and a mileage recorder feed information into a miniature computer, which calculates your car's position and fixes it on the road map on the screen. The projector rolls the film up, down and sidewise to keep the car's position always in the centre of the screen. A film lead can carry maps of about 60,000 square miles. Price for not getting lost: about $6,000. But the maker estimates that with mass production it'll be cheap enough to install in medium-priced vehicles in 10 years.

PEEKABOO SPLINTS

An inflatable splint, made of transparent polyvinyl chloride, is the latest advance in the first-aid art of splinting. The splints are made of two sleeves of PVC plastic, one inside the other, which are rolled onto the fractured limb. The outside sleeve is blown up like a balloon, and it exerts pressure on and straightens out the inside sleeve next to the fracture. The inside sleeve in turn straightens out the fractured arm or leg, holding it immobile till the patient gets to a hospital. They're fast and easy to apply and, unlike metal and wood splints, weigh next to nothing. Because they're transparent, a doctor can examine and X-rays without removing the splint. But they tend to lose flexibility in sub-zero weather, or if unused over a long time. The splints, costing from $25 to $35, come in sizes and shapes for arm, leg, wrists and ankles. There's even one made for horses.

DOWN TO THE SEA FOR OIL

The most explosive spread of activity in the search for petroleum has been offshore, on the continental shelves separating land masses and the sea bottom. Ten years ago, only a few countries were being explored offshore. Today producers are exploring or developing offshore of some 60 countries. Already, close to four million barrels daily—16 percent of the free world's daily production—come from offshore reserves.

IRON'S BONNY GLOW

How to keep iron ore from catching a chill is the problem facing steel-makers. And the answer may be to outfit the ore with a good winter overcoat tailor-made from polyurethane foam plastic, a crumb oil derivative. In cold weather, frozen ore sticks to the sides of open iron ore railway cars on route to the blast furnaces. It costs time and money to thaw out the ore before it can be made into steel. So U.S. steelmen are tinkering with ore cars sprayed on the outside with polyurethane, a yellow foam insulating material. If it works (and we won't know till they've taken it through long periods of bitter weather), it could solve one of the major headaches facing northern Quebec's and Ontario's ore shippers.

SKIJUMBO AND LAVE

You've got a better chance of surviving a traffic accident in Sweden. According to a recent survey of Canada's Traffic Injury Research Foundation, Sweden's motor accident death rate is just 15.2 per 100,000 population—best of the world's large countries. Canada's 21.3 rate sixth among the countries surveyed, behind Sweden, Japan, Belgium, France and the U.S., but ahead of Austria, Switzerland, Australia and West Germany.

IT'S TOUGH TO PARK, THOUGH

For the revolutionary who has everything: the latest passenger car on the market is a U.S.-made, custom-built model called the Commando V-100. Standard equipment on this $24,500 amphibious armored car includes bullet-proof tires. Among the optional extras are a 30-degree turret with either twin grenade launchers, a 20 mm. cannon or, if you prefer, a matching set of .30 caliber machine guns.

SWIFT SUCCESSION OF SQUEEZES

The most used plastic by weight in Canada is polyethylene. Last year Canadians used 160 million pounds of the stuff, about 50 percent of all the plastic consumed in the country. Polyethylene is used as wrapping film, and as a coating for paper, aluminium foil and other materials. It's the protective coating for wire and cables, and goes into the ubiquitous squeeze bottles lining drug and grocery store shelves.