TABLE XVIII
LINEAR FEET COVERED BY TANK OF ANY CAPACITY FOR VARIOUS WIDTHS AND RATES OF APPLICATION

<table>
<thead>
<tr>
<th>Width (in feet)</th>
<th>10</th>
<th>15</th>
<th>20</th>
<th>25</th>
<th>30</th>
<th>40</th>
<th>50</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rate (in gal/yd²)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.1</td>
<td>300</td>
<td>200</td>
<td>150</td>
<td>120</td>
<td>100</td>
<td>75</td>
<td>60</td>
</tr>
<tr>
<td>0.2</td>
<td>150</td>
<td>100</td>
<td>75</td>
<td>60</td>
<td>50</td>
<td>37</td>
<td>30</td>
</tr>
<tr>
<td>0.5</td>
<td>60</td>
<td>40</td>
<td>30</td>
<td>24</td>
<td>20</td>
<td>15</td>
<td>12</td>
</tr>
</tbody>
</table>

Note:
In many instances it will be easier to make such computations from data contained in Table XVIII-IV using appropriate multiplying factors. For example, it is apparent that the number of linear feet covered by a 1000-gallon tank, for a given width, would be twice that covered by a 2000-gallon tank of the same width. If the tank capacity is not in some convenient multiple, such as a 3000-gallon tank, the data contained in Table XVIII-IV for the 3000-gallon tank may be multiplied by an appropriate factor. For the 3000-gallon tank, the multiplying factor would be 3000 / 2000 = 1.5. An example of such a computation for the 3500-gallon tank is as follows:

1. Table XVIII-IV indicates that a 3000-gallon tank will cover 375 linear feet when applied to a strip 12 feet wide and at a rate of 0.25 gallon per yd².
2. A 3500-gallon tank would cover 1.3 times this distance, or 3.3 × 3750 = 12,375 linear feet.

To compute the number of linear feet which will be covered by a tank of any capacity, for various widths and rates of application, use the following formula:

\[
L = \frac{C}{W} \times R
\]

Where:
- \(L \) = No. of linear feet which will be covered
- \(C \) = Capacity of tank in gallons (or quantity of asphalt in tank)
- \(R \) = Rate of application in gallon per sq yd
- \(W \) = Width of application in feet

Example:
If a 5000-gallon tank is applied to a strip 18 feet wide at a rate of 0.30 gallon per yd², the number of linear feet covered is:

\[
L = \frac{5000 \text{ gal}}{18 \text{ ft}} \times 0.30 \text{ gal/ft²} = 1250 \text{ linear ft}
\]
TABLE XV-16
QUANTITIES FOR VARIOUS DEPTHS OF CYLINDRICAL TANKS IN HORIZONTAL POSITION

<table>
<thead>
<tr>
<th>Depth Filled</th>
<th>% of Capacity</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.20</td>
<td>26</td>
<td>20.73</td>
<td>31</td>
<td>51.37</td>
<td>76</td>
<td>81.50</td>
</tr>
<tr>
<td>2</td>
<td>0.30</td>
<td>27</td>
<td>21.86</td>
<td>52</td>
<td>52.55</td>
<td>77</td>
<td>82.60</td>
</tr>
<tr>
<td>3</td>
<td>0.20</td>
<td>28</td>
<td>22.00</td>
<td>53</td>
<td>53.81</td>
<td>78</td>
<td>83.68</td>
</tr>
<tr>
<td>4</td>
<td>0.40</td>
<td>29</td>
<td>24.07</td>
<td>54</td>
<td>55.08</td>
<td>79</td>
<td>84.74</td>
</tr>
<tr>
<td>5</td>
<td>1.87</td>
<td>30</td>
<td>25.31</td>
<td>55</td>
<td>56.34</td>
<td>80</td>
<td>85.77</td>
</tr>
<tr>
<td>6</td>
<td>2.45</td>
<td>31</td>
<td>26.48</td>
<td>56</td>
<td>57.60</td>
<td>81</td>
<td>86.77</td>
</tr>
<tr>
<td>7</td>
<td>3.07</td>
<td>32</td>
<td>27.66</td>
<td>57</td>
<td>58.86</td>
<td>82</td>
<td>87.78</td>
</tr>
<tr>
<td>8</td>
<td>3.74</td>
<td>33</td>
<td>28.84</td>
<td>58</td>
<td>60.11</td>
<td>83</td>
<td>88.78</td>
</tr>
<tr>
<td>9</td>
<td>4.45</td>
<td>34</td>
<td>30.03</td>
<td>59</td>
<td>61.36</td>
<td>84</td>
<td>89.69</td>
</tr>
<tr>
<td>10</td>
<td>5.20</td>
<td>35</td>
<td>31.19</td>
<td>60</td>
<td>62.61</td>
<td>85</td>
<td>90.60</td>
</tr>
<tr>
<td>11</td>
<td>5.98</td>
<td>36</td>
<td>32.44</td>
<td>61</td>
<td>63.86</td>
<td>86</td>
<td>91.50</td>
</tr>
<tr>
<td>12</td>
<td>6.80</td>
<td>37</td>
<td>33.66</td>
<td>62</td>
<td>65.10</td>
<td>87</td>
<td>92.36</td>
</tr>
<tr>
<td>13</td>
<td>7.44</td>
<td>38</td>
<td>34.90</td>
<td>63</td>
<td>66.34</td>
<td>88</td>
<td>93.20</td>
</tr>
<tr>
<td>14</td>
<td>8.20</td>
<td>39</td>
<td>36.14</td>
<td>64</td>
<td>67.56</td>
<td>89</td>
<td>94.02</td>
</tr>
<tr>
<td>15</td>
<td>9.40</td>
<td>40</td>
<td>37.39</td>
<td>65</td>
<td>68.81</td>
<td>90</td>
<td>94.80</td>
</tr>
<tr>
<td>16</td>
<td>10.32</td>
<td>41</td>
<td>38.64</td>
<td>66</td>
<td>69.97</td>
<td>91</td>
<td>95.58</td>
</tr>
<tr>
<td>17</td>
<td>11.27</td>
<td>42</td>
<td>39.89</td>
<td>67</td>
<td>71.16</td>
<td>92</td>
<td>96.26</td>
</tr>
<tr>
<td>18</td>
<td>12.24</td>
<td>43</td>
<td>41.14</td>
<td>68</td>
<td>72.34</td>
<td>93</td>
<td>96.83</td>
</tr>
<tr>
<td>19</td>
<td>13.23</td>
<td>44</td>
<td>42.40</td>
<td>69</td>
<td>73.52</td>
<td>94</td>
<td>97.55</td>
</tr>
<tr>
<td>20</td>
<td>14.23</td>
<td>45</td>
<td>43.66</td>
<td>70</td>
<td>74.69</td>
<td>95</td>
<td>98.23</td>
</tr>
<tr>
<td>21</td>
<td>15.26</td>
<td>46</td>
<td>44.92</td>
<td>71</td>
<td>75.93</td>
<td>96</td>
<td>98.86</td>
</tr>
<tr>
<td>22</td>
<td>16.32</td>
<td>47</td>
<td>46.19</td>
<td>72</td>
<td>77.18</td>
<td>97</td>
<td>99.10</td>
</tr>
<tr>
<td>23</td>
<td>17.40</td>
<td>48</td>
<td>47.45</td>
<td>73</td>
<td>78.41</td>
<td>98</td>
<td>99.50</td>
</tr>
<tr>
<td>24</td>
<td>18.50</td>
<td>49</td>
<td>48.73</td>
<td>74</td>
<td>79.77</td>
<td>99</td>
<td>99.80</td>
</tr>
<tr>
<td>25</td>
<td>19.63</td>
<td>50</td>
<td>50.00</td>
<td>75</td>
<td>80.39</td>
<td>99</td>
<td>99.80</td>
</tr>
</tbody>
</table>

Full capacity of tank in U.S. gallons = 0.7854 x D^2 x L

Note: The formula for direct computation of quantity when tank is less than half full is shown below. When more than half full, compute the full capacity of the tank as noted above; consider the shaded portion to represent the unfilled portion at the top of the tank and compute this volume as indicated below; then, deduct the volume determined for the unfilled portion from the total volume of the tank to arrive at the volume of the filled portion.

First, compute where \(\theta = \frac{d}{R-L}\)

Then \(A = \pi R^2 \theta \div 180 - \pi \sin \theta (R - h)\)

And \(V = L \pi R^2 \theta \div 180 - \pi \sin \theta (R - h)\)

Where \(A\) = Cross sectional area of filled portion of tank in sq in
\(V\) = Volume of filled portion of tank in U.S. gallons
\(L\) = Length of interior in tank in inches
\(D\) = Diameter of interior in tank in inches
\(R\) = Radius of interior in tank in inches
\(h\) = Depth of liquid in inches
\(d\) = \(R - h\), inches

Note: The volume occupied by any piping, fittings or other material inside the tank must be deducted from the volume computed by use of the table or formula.

TABLE XV-17
TEMPERATURE CONVERSIONS °F to °C and °C to °F

The formula for converting °F to °C is: °C = \(\frac{5}{9} (°F - 32)\)

The formula for converting °C to °F is: °F = \(\frac{9}{5} °C + 32\)

To use the following table, locate the temperature to be converted in the center column which is in boldface type. If the temperature to be converted is in °C, the temperature in °F will be found in the column to the right. If the temperature to be converted is in °F, the temperature in °C will be found in the column to the left. For example, to convert 25°C to °F, locate 25 in the center (boldface) column. In the column to the right, under °F, it is found that 25°C = 77°F.
<table>
<thead>
<tr>
<th>°C</th>
<th>Temp. to Convert °C</th>
<th>°F</th>
<th>Temp. to Convert °C</th>
<th>°F</th>
</tr>
</thead>
<tbody>
<tr>
<td>+21.1</td>
<td>+70</td>
<td>158.0</td>
<td>+48.9</td>
<td>+120</td>
</tr>
<tr>
<td>+21.7</td>
<td>71</td>
<td>159.8</td>
<td>49.4</td>
<td>121</td>
</tr>
<tr>
<td>+22.2</td>
<td>72</td>
<td>161.6</td>
<td>50.0</td>
<td>122</td>
</tr>
<tr>
<td>+22.8</td>
<td>73</td>
<td>163.4</td>
<td>50.6</td>
<td>123</td>
</tr>
<tr>
<td>+23.3</td>
<td>74</td>
<td>165.2</td>
<td>51.1</td>
<td>124</td>
</tr>
<tr>
<td>+23.9</td>
<td>75</td>
<td>167.0</td>
<td>51.7</td>
<td>125</td>
</tr>
<tr>
<td>+24.4</td>
<td>76</td>
<td>168.8</td>
<td>52.2</td>
<td>126</td>
</tr>
<tr>
<td>+25.0</td>
<td>77</td>
<td>170.6</td>
<td>52.8</td>
<td>127</td>
</tr>
<tr>
<td>+25.5</td>
<td>78</td>
<td>172.4</td>
<td>53.3</td>
<td>128</td>
</tr>
<tr>
<td>+26.1</td>
<td>79</td>
<td>174.2</td>
<td>53.9</td>
<td>129</td>
</tr>
</tbody>
</table>

--- 356 ---

--- 357 ---
TABLE XV-17 (Continued)

<table>
<thead>
<tr>
<th>Temp. to Convert</th>
<th>°C to °F</th>
<th>Temp. to Convert</th>
<th>°C to °F</th>
<th>Temp. to Convert</th>
<th>°C to °F</th>
</tr>
</thead>
<tbody>
<tr>
<td>+15.2</td>
<td>+59.4</td>
<td>+211.1</td>
<td>+412.0</td>
<td>+365.0</td>
<td>+697.0</td>
</tr>
<tr>
<td>+12.0</td>
<td>+53.6</td>
<td>+207.0</td>
<td>+406.0</td>
<td>+351.0</td>
<td>+660.0</td>
</tr>
<tr>
<td>+9.6</td>
<td>+49.3</td>
<td>+202.2</td>
<td>+404.2</td>
<td>+336.0</td>
<td>+627.2</td>
</tr>
<tr>
<td>+7.2</td>
<td>+43.9</td>
<td>+197.2</td>
<td>+398.2</td>
<td>+321.0</td>
<td>+603.2</td>
</tr>
<tr>
<td>+4.8</td>
<td>+40.4</td>
<td>+192.2</td>
<td>+392.2</td>
<td>+306.0</td>
<td>+580.0</td>
</tr>
<tr>
<td>+2.4</td>
<td>+36.9</td>
<td>+187.2</td>
<td>+386.2</td>
<td>+291.0</td>
<td>+557.2</td>
</tr>
<tr>
<td>0</td>
<td>+33.2</td>
<td>+182.2</td>
<td>+380.2</td>
<td>+276.0</td>
<td>+534.2</td>
</tr>
<tr>
<td>-2.4</td>
<td>+29.1</td>
<td>+177.2</td>
<td>+374.2</td>
<td>+261.0</td>
<td>+511.2</td>
</tr>
<tr>
<td>-4.8</td>
<td>+25.6</td>
<td>+172.2</td>
<td>+368.2</td>
<td>+246.0</td>
<td>+488.2</td>
</tr>
<tr>
<td>-7.2</td>
<td>+22.1</td>
<td>+167.2</td>
<td>+362.2</td>
<td>+231.0</td>
<td>+465.2</td>
</tr>
<tr>
<td>-9.6</td>
<td>+18.6</td>
<td>+162.2</td>
<td>+356.2</td>
<td>+216.0</td>
<td>+442.2</td>
</tr>
<tr>
<td>-12.0</td>
<td>+15.2</td>
<td>+157.2</td>
<td>+350.2</td>
<td>+201.0</td>
<td>+419.2</td>
</tr>
<tr>
<td>-15.2</td>
<td>+11.9</td>
<td>+152.2</td>
<td>+344.2</td>
<td>+186.0</td>
<td>+396.2</td>
</tr>
<tr>
<td>-18.0</td>
<td>+8.6</td>
<td>+147.2</td>
<td>+338.2</td>
<td>+171.0</td>
<td>+373.2</td>
</tr>
<tr>
<td>-21.0</td>
<td>+5.3</td>
<td>+142.2</td>
<td>+332.2</td>
<td>+156.0</td>
<td>+350.2</td>
</tr>
<tr>
<td>-24.0</td>
<td>+2.0</td>
<td>+137.2</td>
<td>+326.2</td>
<td>+141.0</td>
<td>+327.2</td>
</tr>
<tr>
<td>-27.0</td>
<td>-1.7</td>
<td>+132.2</td>
<td>+320.2</td>
<td>+126.0</td>
<td>+304.2</td>
</tr>
<tr>
<td>-30.0</td>
<td>-5.3</td>
<td>+127.2</td>
<td>+314.2</td>
<td>+111.0</td>
<td>+281.2</td>
</tr>
<tr>
<td>-33.0</td>
<td>-8.6</td>
<td>+122.2</td>
<td>+308.2</td>
<td>+96.0</td>
<td>+258.2</td>
</tr>
<tr>
<td>-36.0</td>
<td>-11.9</td>
<td>+117.2</td>
<td>+302.2</td>
<td>+81.0</td>
<td>+235.2</td>
</tr>
<tr>
<td>-39.0</td>
<td>-15.2</td>
<td>+112.2</td>
<td>+296.2</td>
<td>+66.0</td>
<td>+212.2</td>
</tr>
<tr>
<td>-42.0</td>
<td>-18.6</td>
<td>+107.2</td>
<td>+290.2</td>
<td>+51.0</td>
<td>+189.2</td>
</tr>
<tr>
<td>-45.0</td>
<td>-21.9</td>
<td>+102.2</td>
<td>+284.2</td>
<td>+36.0</td>
<td>+166.2</td>
</tr>
<tr>
<td>-48.0</td>
<td>-25.2</td>
<td>+97.2</td>
<td>+278.2</td>
<td>+21.0</td>
<td>+143.2</td>
</tr>
<tr>
<td>-51.0</td>
<td>-28.6</td>
<td>+92.2</td>
<td>+272.2</td>
<td>+6.0</td>
<td>+120.2</td>
</tr>
<tr>
<td>-54.0</td>
<td>-31.9</td>
<td>+87.2</td>
<td>+266.2</td>
<td>-1.7</td>
<td>+097.2</td>
</tr>
<tr>
<td>-57.0</td>
<td>-35.2</td>
<td>+82.2</td>
<td>+260.2</td>
<td>-7.6</td>
<td>+074.2</td>
</tr>
<tr>
<td>-60.0</td>
<td>-38.6</td>
<td>+77.2</td>
<td>+254.2</td>
<td>-12.9</td>
<td>+051.2</td>
</tr>
<tr>
<td>-63.0</td>
<td>-42.0</td>
<td>+72.2</td>
<td>+248.2</td>
<td>-18.2</td>
<td>+028.2</td>
</tr>
<tr>
<td>-66.0</td>
<td>-45.3</td>
<td>+67.2</td>
<td>+242.2</td>
<td>-23.5</td>
<td>+005.2</td>
</tr>
<tr>
<td>-69.0</td>
<td>-48.6</td>
<td>+62.2</td>
<td>+236.2</td>
<td>-28.8</td>
<td>+082.2</td>
</tr>
<tr>
<td>-72.0</td>
<td>-52.0</td>
<td>+57.2</td>
<td>+230.2</td>
<td>-34.1</td>
<td>+059.2</td>
</tr>
<tr>
<td>-75.0</td>
<td>-55.3</td>
<td>+52.2</td>
<td>+224.2</td>
<td>-39.4</td>
<td>+036.2</td>
</tr>
<tr>
<td>-78.0</td>
<td>-58.6</td>
<td>+47.2</td>
<td>+218.2</td>
<td>-44.7</td>
<td>+013.2</td>
</tr>
<tr>
<td>-81.0</td>
<td>-61.9</td>
<td>+42.2</td>
<td>+212.2</td>
<td>-50.0</td>
<td>-000.0</td>
</tr>
</tbody>
</table>

TABLE XV-17 (Continued)

<table>
<thead>
<tr>
<th>Temp. to Convert</th>
<th>°C to °F</th>
<th>Temp. to Convert</th>
<th>°C to °F</th>
<th>Temp. to Convert</th>
<th>°C to °F</th>
</tr>
</thead>
<tbody>
<tr>
<td>271.1</td>
<td>518.0</td>
<td>272.2</td>
<td>518.4</td>
<td>273.2</td>
<td>518.8</td>
</tr>
<tr>
<td>272.5</td>
<td>519.5</td>
<td>273.5</td>
<td>520.0</td>
<td>274.5</td>
<td>520.5</td>
</tr>
<tr>
<td>274.0</td>
<td>521.0</td>
<td>275.0</td>
<td>521.5</td>
<td>276.0</td>
<td>522.0</td>
</tr>
<tr>
<td>276.5</td>
<td>522.5</td>
<td>278.0</td>
<td>523.0</td>
<td>279.0</td>
<td>523.5</td>
</tr>
<tr>
<td>279.5</td>
<td>524.5</td>
<td>281.0</td>
<td>525.0</td>
<td>282.0</td>
<td>525.5</td>
</tr>
<tr>
<td>280.0</td>
<td>526.0</td>
<td>281.5</td>
<td>526.5</td>
<td>282.5</td>
<td>527.0</td>
</tr>
<tr>
<td>282.5</td>
<td>528.5</td>
<td>284.0</td>
<td>529.0</td>
<td>285.0</td>
<td>529.5</td>
</tr>
<tr>
<td>283.5</td>
<td>530.0</td>
<td>285.0</td>
<td>530.5</td>
<td>286.0</td>
<td>531.0</td>
</tr>
<tr>
<td>285.0</td>
<td>531.5</td>
<td>286.5</td>
<td>532.0</td>
<td>287.0</td>
<td>532.5</td>
</tr>
<tr>
<td>287.0</td>
<td>533.5</td>
<td>288.0</td>
<td>534.0</td>
<td>289.0</td>
<td>534.5</td>
</tr>
<tr>
<td>289.0</td>
<td>535.5</td>
<td>290.0</td>
<td>536.0</td>
<td>291.0</td>
<td>536.5</td>
</tr>
<tr>
<td>290.0</td>
<td>537.0</td>
<td>291.5</td>
<td>538.0</td>
<td>292.5</td>
<td>538.5</td>
</tr>
<tr>
<td>292.5</td>
<td>539.0</td>
<td>294.0</td>
<td>539.5</td>
<td>295.0</td>
<td>540.0</td>
</tr>
<tr>
<td>294.0</td>
<td>540.5</td>
<td>295.5</td>
<td>541.0</td>
<td>297.0</td>
<td>541.5</td>
</tr>
<tr>
<td>295.0</td>
<td>542.0</td>
<td>296.0</td>
<td>542.5</td>
<td>297.5</td>
<td>543.0</td>
</tr>
<tr>
<td>296.0</td>
<td>543.5</td>
<td>298.0</td>
<td>544.0</td>
<td>299.0</td>
<td>544.5</td>
</tr>
<tr>
<td>297.0</td>
<td>545.0</td>
<td>299.5</td>
<td>546.0</td>
<td>301.0</td>
<td>546.5</td>
</tr>
<tr>
<td>298.0</td>
<td>546.5</td>
<td>302.0</td>
<td>547.0</td>
<td>303.0</td>
<td>547.5</td>
</tr>
<tr>
<td>299.0</td>
<td>547.5</td>
<td>304.0</td>
<td>548.0</td>
<td>305.0</td>
<td>548.5</td>
</tr>
<tr>
<td>300.0</td>
<td>549.0</td>
<td>306.0</td>
<td>549.5</td>
<td>307.0</td>
<td>550.0</td>
</tr>
</tbody>
</table>

358

359
TABLE XV-18
TEMPERATURE OF LIQUIDS HEATED BY STEAM AT VARIOUS GAUGE PRESSURES

<table>
<thead>
<tr>
<th>Gauge Pressure in Lbs Per Square Inch</th>
<th>Temperature of Saturated Steam Degrees Fahrenheit</th>
<th>Highest Temp. a Liquid Can be Heated in a Vessel With Heating Equipment 85% Efficient</th>
</tr>
</thead>
<tbody>
<tr>
<td>50</td>
<td>297</td>
<td>253</td>
</tr>
<tr>
<td>55</td>
<td>302</td>
<td>257</td>
</tr>
<tr>
<td>60</td>
<td>307</td>
<td>261</td>
</tr>
<tr>
<td>65</td>
<td>312</td>
<td>265</td>
</tr>
<tr>
<td>70</td>
<td>316</td>
<td>269</td>
</tr>
<tr>
<td>75</td>
<td>320</td>
<td>272</td>
</tr>
<tr>
<td>80</td>
<td>324</td>
<td>275</td>
</tr>
<tr>
<td>85</td>
<td>327</td>
<td>278</td>
</tr>
<tr>
<td>90</td>
<td>331</td>
<td>281</td>
</tr>
<tr>
<td>95</td>
<td>334</td>
<td>284</td>
</tr>
<tr>
<td>100</td>
<td>338</td>
<td>287</td>
</tr>
<tr>
<td>105</td>
<td>341</td>
<td>290</td>
</tr>
<tr>
<td>110</td>
<td>344</td>
<td>292</td>
</tr>
<tr>
<td>115</td>
<td>347</td>
<td>295</td>
</tr>
<tr>
<td>120</td>
<td>350</td>
<td>298</td>
</tr>
<tr>
<td>125</td>
<td>353</td>
<td>300</td>
</tr>
<tr>
<td>130</td>
<td>355</td>
<td>304</td>
</tr>
<tr>
<td>135</td>
<td>358</td>
<td>304</td>
</tr>
<tr>
<td>140</td>
<td>361</td>
<td>307</td>
</tr>
<tr>
<td>145</td>
<td>363</td>
<td>309</td>
</tr>
<tr>
<td>150</td>
<td>366</td>
<td>311</td>
</tr>
</tbody>
</table>

TABLE XV-19
WEIGHT PER CUBIC FOOT AND PER CUBIC YARD OF DRY MINERAL AGGREGATES FOR AGGREGATES OF DIFFERENT SPECIFIC GRAVITY AND VARIOUS VOID CONTENTS

<table>
<thead>
<tr>
<th>Specific Gravity</th>
<th>15</th>
<th>20</th>
<th>25</th>
<th>30</th>
<th>35</th>
<th>40</th>
<th>45</th>
<th>50</th>
<th>55</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.0</td>
<td>106.1</td>
<td>99.8</td>
<td>93.6</td>
<td>87.4</td>
<td>81.1</td>
<td>74.9</td>
<td>68.6</td>
<td>62.4</td>
<td>56.2</td>
</tr>
<tr>
<td>2.1</td>
<td>111.4</td>
<td>104.8</td>
<td>98.3</td>
<td>91.7</td>
<td>85.2</td>
<td>78.6</td>
<td>72.1</td>
<td>65.5</td>
<td>59.0</td>
</tr>
<tr>
<td>2.2</td>
<td>116.7</td>
<td>109.6</td>
<td>103.0</td>
<td>96.1</td>
<td>89.2</td>
<td>82.4</td>
<td>75.8</td>
<td>68.6</td>
<td>61.8</td>
</tr>
<tr>
<td>2.3</td>
<td>122.0</td>
<td>114.4</td>
<td>107.6</td>
<td>100.5</td>
<td>93.4</td>
<td>86.7</td>
<td>79.9</td>
<td>73.8</td>
<td>66.6</td>
</tr>
<tr>
<td>2.4</td>
<td>127.3</td>
<td>119.4</td>
<td>112.1</td>
<td>104.8</td>
<td>97.4</td>
<td>89.9</td>
<td>82.4</td>
<td>74.8</td>
<td>67.4</td>
</tr>
<tr>
<td>2.5</td>
<td>132.6</td>
<td>124.0</td>
<td>117.7</td>
<td>102.2</td>
<td>101.4</td>
<td>93.6</td>
<td>85.8</td>
<td>78.0</td>
<td>70.2</td>
</tr>
<tr>
<td>2.6</td>
<td>137.9</td>
<td>129.8</td>
<td>113.6</td>
<td>105.0</td>
<td>97.8</td>
<td>90.5</td>
<td>82.1</td>
<td>73.2</td>
<td>64.6</td>
</tr>
<tr>
<td>2.7</td>
<td>143.2</td>
<td>135.8</td>
<td>117.9</td>
<td>107.8</td>
<td>101.1</td>
<td>92.7</td>
<td>84.4</td>
<td>75.7</td>
<td>67.6</td>
</tr>
<tr>
<td>2.8</td>
<td>148.5</td>
<td>141.8</td>
<td>121.7</td>
<td>110.4</td>
<td>103.1</td>
<td>94.6</td>
<td>86.7</td>
<td>78.0</td>
<td>70.2</td>
</tr>
<tr>
<td>2.9</td>
<td>153.8</td>
<td>147.8</td>
<td>125.5</td>
<td>112.7</td>
<td>105.3</td>
<td>96.6</td>
<td>88.8</td>
<td>79.9</td>
<td>70.2</td>
</tr>
<tr>
<td>3.0</td>
<td>159.1</td>
<td>154.0</td>
<td>129.3</td>
<td>114.5</td>
<td>106.6</td>
<td>98.6</td>
<td>90.6</td>
<td>82.1</td>
<td>70.9</td>
</tr>
<tr>
<td>3.1</td>
<td>154.4</td>
<td>150.8</td>
<td>133.5</td>
<td>115.4</td>
<td>107.5</td>
<td>99.4</td>
<td>91.3</td>
<td>83.1</td>
<td>71.0</td>
</tr>
<tr>
<td>3.2</td>
<td>159.7</td>
<td>157.7</td>
<td>137.8</td>
<td>116.4</td>
<td>108.6</td>
<td>99.5</td>
<td>91.7</td>
<td>83.2</td>
<td>71.0</td>
</tr>
</tbody>
</table>

Notes:
1. The Specific Gravity of commonly used road construction aggregates normally is within the following range:
 - Granite 2.6-2.9
 - Sand (Quarztzite) 2.5-2.7
 - Blast Furnace Slag 2.0-2.7
 - Limestone 2.2-2.4
 - Tramprock 2.5-2.7

2. Data contained in this table are applicable to dry mineral aggregates in either the loose or compacted state, and the void content should be selected accordingly. Preferably, both the void content and specific gravity should be determined in the laboratory.

3. The formulas for computation of data in table above are as follows:
 - Per Cu Ft
 \[W = \frac{62.4 	imes (100 - V)}{100} = 0.624 (100 - V) \]
 - Per Cu Yd
 \[W = \frac{27 	imes 62.4 	imes (100 - V)}{100} = 16.85 (100 - V) \]

Where:
- \(W \) = Wt. per cu ft
- \(W \) = Wt. per cu yd
- \(G \) = Specific gravity
- \(V \) = Air void content, percent
TABLE XV-20
WEIGHT AND VOLUME RELATIONS FOR VARIOUS TYPES OF COMPACTIONed ASPHALT PAVEMENTS

<table>
<thead>
<tr>
<th>lbs Per Cubic Ft</th>
<th>lbs Per Cubic Yard</th>
<th>lbs Per Square Yard</th>
<th>lbs Per 1 Inch Depth</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>2700</td>
<td>82-101</td>
<td>95</td>
</tr>
<tr>
<td>105</td>
<td>2655</td>
<td>80-100</td>
<td>100</td>
</tr>
<tr>
<td>110</td>
<td>2600</td>
<td>78-100</td>
<td>105</td>
</tr>
<tr>
<td>115</td>
<td>2555</td>
<td>75-100</td>
<td>110</td>
</tr>
<tr>
<td>120</td>
<td>2500</td>
<td>72-100</td>
<td>115</td>
</tr>
<tr>
<td>125</td>
<td>2455</td>
<td>70-100</td>
<td>120</td>
</tr>
<tr>
<td>130</td>
<td>2400</td>
<td>68-100</td>
<td>125</td>
</tr>
<tr>
<td>135</td>
<td>2355</td>
<td>66-100</td>
<td>130</td>
</tr>
<tr>
<td>140</td>
<td>2300</td>
<td>63-100</td>
<td>135</td>
</tr>
<tr>
<td>145</td>
<td>2255</td>
<td>61-100</td>
<td>140</td>
</tr>
<tr>
<td>150</td>
<td>2210</td>
<td>59-100</td>
<td>145</td>
</tr>
<tr>
<td>155</td>
<td>2165</td>
<td>57-100</td>
<td>150</td>
</tr>
<tr>
<td>160</td>
<td>2120</td>
<td>55-100</td>
<td>155</td>
</tr>
</tbody>
</table>

TABLE XV-21
POUNDS PER SQUARE YARD OF MATERIAL REQUIRED FOR VARIOUS DEPTHS AND WEIGHTS OF MATERIALS IN POUNDS PER CUBIC YARD

<table>
<thead>
<tr>
<th>lbs Per Cu Yd</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>0.3</td>
<td>0.6</td>
<td>0.8</td>
<td>1.1</td>
<td>1.4</td>
<td>1.7</td>
<td>1.9</td>
<td>2.2</td>
<td>2.5</td>
<td>2.8</td>
<td>3.1</td>
</tr>
<tr>
<td>20</td>
<td>0.6</td>
<td>1.1</td>
<td>1.3</td>
<td>1.6</td>
<td>2.0</td>
<td>2.3</td>
<td>2.6</td>
<td>2.9</td>
<td>3.3</td>
<td>3.6</td>
<td>3.9</td>
</tr>
<tr>
<td>30</td>
<td>0.9</td>
<td>1.7</td>
<td>2.0</td>
<td>2.3</td>
<td>2.7</td>
<td>3.0</td>
<td>3.3</td>
<td>3.6</td>
<td>3.9</td>
<td>4.2</td>
<td>4.5</td>
</tr>
<tr>
<td>40</td>
<td>1.2</td>
<td>2.2</td>
<td>2.5</td>
<td>2.8</td>
<td>3.2</td>
<td>3.5</td>
<td>3.8</td>
<td>4.1</td>
<td>4.4</td>
<td>4.7</td>
<td>5.0</td>
</tr>
<tr>
<td>50</td>
<td>1.5</td>
<td>2.8</td>
<td>3.1</td>
<td>3.4</td>
<td>3.8</td>
<td>4.1</td>
<td>4.4</td>
<td>4.7</td>
<td>5.0</td>
<td>5.3</td>
<td>5.6</td>
</tr>
<tr>
<td>60</td>
<td>1.7</td>
<td>3.3</td>
<td>3.6</td>
<td>3.9</td>
<td>4.3</td>
<td>4.6</td>
<td>4.9</td>
<td>5.2</td>
<td>5.5</td>
<td>5.8</td>
<td>6.1</td>
</tr>
<tr>
<td>70</td>
<td>1.9</td>
<td>3.9</td>
<td>4.2</td>
<td>4.5</td>
<td>4.9</td>
<td>5.2</td>
<td>5.5</td>
<td>5.8</td>
<td>6.1</td>
<td>6.4</td>
<td>6.7</td>
</tr>
<tr>
<td>70</td>
<td>2.2</td>
<td>4.4</td>
<td>4.7</td>
<td>5.0</td>
<td>5.2</td>
<td>5.5</td>
<td>5.8</td>
<td>6.1</td>
<td>6.4</td>
<td>6.7</td>
<td>7.0</td>
</tr>
<tr>
<td>80</td>
<td>2.5</td>
<td>5.0</td>
<td>5.3</td>
<td>5.6</td>
<td>5.9</td>
<td>6.2</td>
<td>6.5</td>
<td>6.8</td>
<td>7.1</td>
<td>7.4</td>
<td>7.7</td>
</tr>
<tr>
<td>90</td>
<td>2.8</td>
<td>5.6</td>
<td>5.9</td>
<td>6.2</td>
<td>6.5</td>
<td>6.8</td>
<td>7.1</td>
<td>7.4</td>
<td>7.7</td>
<td>8.0</td>
<td>8.3</td>
</tr>
<tr>
<td>100</td>
<td>3.1</td>
<td>6.3</td>
<td>6.6</td>
<td>6.9</td>
<td>7.2</td>
<td>7.5</td>
<td>7.8</td>
<td>8.1</td>
<td>8.4</td>
<td>8.7</td>
<td>9.0</td>
</tr>
<tr>
<td>200</td>
<td>5.5</td>
<td>11.1</td>
<td>11.7</td>
<td>12.2</td>
<td>12.7</td>
<td>13.2</td>
<td>13.7</td>
<td>14.2</td>
<td>14.7</td>
<td>15.2</td>
<td>15.7</td>
</tr>
<tr>
<td>300</td>
<td>8.3</td>
<td>16.7</td>
<td>17.3</td>
<td>17.8</td>
<td>18.4</td>
<td>18.9</td>
<td>19.4</td>
<td>19.9</td>
<td>20.4</td>
<td>20.9</td>
<td>21.4</td>
</tr>
<tr>
<td>400</td>
<td>11.1</td>
<td>22.2</td>
<td>22.8</td>
<td>23.3</td>
<td>23.9</td>
<td>24.4</td>
<td>24.9</td>
<td>25.4</td>
<td>25.9</td>
<td>26.4</td>
<td>26.9</td>
</tr>
<tr>
<td>500</td>
<td>13.9</td>
<td>27.8</td>
<td>28.4</td>
<td>28.9</td>
<td>29.5</td>
<td>30.0</td>
<td>30.5</td>
<td>31.0</td>
<td>31.5</td>
<td>32.0</td>
<td>32.5</td>
</tr>
<tr>
<td>600</td>
<td>16.7</td>
<td>33.3</td>
<td>33.9</td>
<td>34.4</td>
<td>35.0</td>
<td>35.5</td>
<td>36.0</td>
<td>36.5</td>
<td>37.0</td>
<td>37.5</td>
<td>38.0</td>
</tr>
<tr>
<td>700</td>
<td>19.4</td>
<td>38.9</td>
<td>39.5</td>
<td>40.0</td>
<td>40.6</td>
<td>41.1</td>
<td>41.6</td>
<td>42.1</td>
<td>42.6</td>
<td>43.1</td>
<td>43.6</td>
</tr>
<tr>
<td>800</td>
<td>22.2</td>
<td>44.4</td>
<td>45.0</td>
<td>45.5</td>
<td>46.1</td>
<td>46.6</td>
<td>47.1</td>
<td>47.6</td>
<td>48.1</td>
<td>48.6</td>
<td>49.1</td>
</tr>
<tr>
<td>900</td>
<td>25.0</td>
<td>50.0</td>
<td>50.5</td>
<td>51.0</td>
<td>51.5</td>
<td>52.0</td>
<td>52.5</td>
<td>53.0</td>
<td>53.5</td>
<td>54.0</td>
<td>54.5</td>
</tr>
<tr>
<td>1000</td>
<td>27.8</td>
<td>55.5</td>
<td>56.0</td>
<td>56.5</td>
<td>57.0</td>
<td>57.5</td>
<td>58.0</td>
<td>58.5</td>
<td>59.0</td>
<td>59.5</td>
<td>60.0</td>
</tr>
<tr>
<td>2000</td>
<td>55.5</td>
<td>111.1</td>
<td>111.6</td>
<td>112.1</td>
<td>112.6</td>
<td>113.1</td>
<td>113.6</td>
<td>114.1</td>
<td>114.6</td>
<td>115.1</td>
<td>115.6</td>
</tr>
<tr>
<td>3000</td>
<td>83.3</td>
<td>166.6</td>
<td>167.1</td>
<td>167.6</td>
<td>168.1</td>
<td>168.6</td>
<td>169.1</td>
<td>169.6</td>
<td>170.1</td>
<td>170.6</td>
<td>171.1</td>
</tr>
<tr>
<td>4000</td>
<td>111.1</td>
<td>222.2</td>
<td>222.7</td>
<td>223.2</td>
<td>223.7</td>
<td>224.2</td>
<td>224.7</td>
<td>225.2</td>
<td>225.7</td>
<td>226.2</td>
<td>226.7</td>
</tr>
<tr>
<td>5000</td>
<td>138.8</td>
<td>277.7</td>
<td>278.2</td>
<td>278.7</td>
<td>279.2</td>
<td>279.7</td>
<td>280.2</td>
<td>280.7</td>
<td>281.2</td>
<td>281.7</td>
<td>282.2</td>
</tr>
</tbody>
</table>

Note: Formula used for calculations: \(a = \frac{(D)}{(36)} \) Weight = \(\frac{q}{W} \) Where:
- \(q \) = Quantity of material in lbs per sq yd
- \(D \) = Depth in inches
- \(W \) = Weight of material in lbs per cu yd
TABLE XV-22

TONS OF MATERIAL REQUIRED PER 100 LINEAR FEET FOR VARIOUS WIDTHS AND POUNDS PER SQUARE YARD

<table>
<thead>
<tr>
<th>Lbs Per Sq Yd</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>20</th>
<th>40</th>
<th>60</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.01</td>
<td>0.01</td>
<td>0.02</td>
<td>0.07</td>
<td>0.10</td>
<td>0.13</td>
<td>0.17</td>
<td>0.20</td>
<td>0.23</td>
<td>0.26</td>
<td>0.40</td>
<td>0.53</td>
<td>0.67</td>
</tr>
<tr>
<td>2</td>
<td>0.03</td>
<td>0.03</td>
<td>0.05</td>
<td>0.11</td>
<td>0.14</td>
<td>0.17</td>
<td>0.20</td>
<td>0.23</td>
<td>0.26</td>
<td>0.29</td>
<td>0.43</td>
<td>0.56</td>
<td>0.70</td>
</tr>
<tr>
<td>3</td>
<td>0.05</td>
<td>0.05</td>
<td>0.07</td>
<td>0.13</td>
<td>0.16</td>
<td>0.19</td>
<td>0.22</td>
<td>0.25</td>
<td>0.28</td>
<td>0.31</td>
<td>0.45</td>
<td>0.58</td>
<td>0.72</td>
</tr>
<tr>
<td>4</td>
<td>0.07</td>
<td>0.07</td>
<td>0.09</td>
<td>0.15</td>
<td>0.18</td>
<td>0.21</td>
<td>0.24</td>
<td>0.27</td>
<td>0.30</td>
<td>0.33</td>
<td>0.47</td>
<td>0.60</td>
<td>0.74</td>
</tr>
<tr>
<td>5</td>
<td>0.09</td>
<td>0.09</td>
<td>0.11</td>
<td>0.17</td>
<td>0.20</td>
<td>0.23</td>
<td>0.26</td>
<td>0.29</td>
<td>0.32</td>
<td>0.35</td>
<td>0.49</td>
<td>0.62</td>
<td>0.76</td>
</tr>
<tr>
<td>6</td>
<td>0.11</td>
<td>0.11</td>
<td>0.13</td>
<td>0.19</td>
<td>0.22</td>
<td>0.25</td>
<td>0.28</td>
<td>0.31</td>
<td>0.34</td>
<td>0.37</td>
<td>0.51</td>
<td>0.64</td>
<td>0.78</td>
</tr>
<tr>
<td>7</td>
<td>0.13</td>
<td>0.13</td>
<td>0.15</td>
<td>0.21</td>
<td>0.24</td>
<td>0.27</td>
<td>0.30</td>
<td>0.33</td>
<td>0.36</td>
<td>0.39</td>
<td>0.53</td>
<td>0.66</td>
<td>0.80</td>
</tr>
<tr>
<td>8</td>
<td>0.15</td>
<td>0.15</td>
<td>0.17</td>
<td>0.23</td>
<td>0.26</td>
<td>0.29</td>
<td>0.32</td>
<td>0.35</td>
<td>0.38</td>
<td>0.41</td>
<td>0.55</td>
<td>0.68</td>
<td>0.82</td>
</tr>
<tr>
<td>9</td>
<td>0.17</td>
<td>0.17</td>
<td>0.19</td>
<td>0.25</td>
<td>0.28</td>
<td>0.31</td>
<td>0.34</td>
<td>0.37</td>
<td>0.40</td>
<td>0.43</td>
<td>0.57</td>
<td>0.70</td>
<td>0.84</td>
</tr>
<tr>
<td>10</td>
<td>0.19</td>
<td>0.19</td>
<td>0.21</td>
<td>0.27</td>
<td>0.30</td>
<td>0.33</td>
<td>0.36</td>
<td>0.39</td>
<td>0.42</td>
<td>0.45</td>
<td>0.59</td>
<td>0.72</td>
<td>0.86</td>
</tr>
<tr>
<td>20</td>
<td>0.38</td>
<td>0.38</td>
<td>0.40</td>
<td>0.46</td>
<td>0.50</td>
<td>0.53</td>
<td>0.56</td>
<td>0.59</td>
<td>0.62</td>
<td>0.65</td>
<td>0.89</td>
<td>1.02</td>
<td>1.16</td>
</tr>
<tr>
<td>40</td>
<td>0.76</td>
<td>0.76</td>
<td>0.78</td>
<td>0.84</td>
<td>0.88</td>
<td>0.92</td>
<td>0.96</td>
<td>0.99</td>
<td>1.03</td>
<td>1.07</td>
<td>1.31</td>
<td>1.45</td>
<td>1.59</td>
</tr>
</tbody>
</table>

Note: Formulas used for calculations:

\[w = \left(\frac{W}{100} \right) \left(\frac{R}{2000} \right) - 0.005556 RW \]

Where:
- \(W \) = Weight of material in tons per 100 feet
- \(R \) = Rate of application in lbs per sq yd
- \(W \) = Width of application in feet

TABLE XV-23

TONS OF MATERIAL REQUIRED PER MILE FOR VARIOUS WIDTHS AND POUNDS PER SQUARE YARD

<table>
<thead>
<tr>
<th>Lbs Per Sq Yd</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>20</th>
<th>40</th>
<th>60</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.01</td>
<td>0.01</td>
<td>0.02</td>
<td>0.07</td>
<td>0.10</td>
<td>0.13</td>
<td>0.17</td>
<td>0.20</td>
<td>0.23</td>
<td>0.26</td>
<td>0.40</td>
<td>0.53</td>
<td>0.67</td>
</tr>
<tr>
<td>2</td>
<td>0.03</td>
<td>0.03</td>
<td>0.05</td>
<td>0.11</td>
<td>0.14</td>
<td>0.17</td>
<td>0.20</td>
<td>0.23</td>
<td>0.26</td>
<td>0.29</td>
<td>0.43</td>
<td>0.56</td>
<td>0.70</td>
</tr>
<tr>
<td>3</td>
<td>0.05</td>
<td>0.05</td>
<td>0.07</td>
<td>0.13</td>
<td>0.16</td>
<td>0.19</td>
<td>0.22</td>
<td>0.25</td>
<td>0.28</td>
<td>0.31</td>
<td>0.45</td>
<td>0.58</td>
<td>0.72</td>
</tr>
<tr>
<td>4</td>
<td>0.07</td>
<td>0.07</td>
<td>0.09</td>
<td>0.15</td>
<td>0.18</td>
<td>0.21</td>
<td>0.24</td>
<td>0.27</td>
<td>0.30</td>
<td>0.33</td>
<td>0.47</td>
<td>0.60</td>
<td>0.74</td>
</tr>
<tr>
<td>5</td>
<td>0.09</td>
<td>0.09</td>
<td>0.11</td>
<td>0.17</td>
<td>0.20</td>
<td>0.23</td>
<td>0.26</td>
<td>0.29</td>
<td>0.32</td>
<td>0.35</td>
<td>0.49</td>
<td>0.62</td>
<td>0.76</td>
</tr>
<tr>
<td>6</td>
<td>0.11</td>
<td>0.11</td>
<td>0.13</td>
<td>0.19</td>
<td>0.22</td>
<td>0.25</td>
<td>0.28</td>
<td>0.31</td>
<td>0.34</td>
<td>0.37</td>
<td>0.51</td>
<td>0.64</td>
<td>0.78</td>
</tr>
<tr>
<td>7</td>
<td>0.13</td>
<td>0.13</td>
<td>0.15</td>
<td>0.21</td>
<td>0.24</td>
<td>0.27</td>
<td>0.30</td>
<td>0.33</td>
<td>0.36</td>
<td>0.39</td>
<td>0.53</td>
<td>0.66</td>
<td>0.80</td>
</tr>
<tr>
<td>8</td>
<td>0.15</td>
<td>0.15</td>
<td>0.17</td>
<td>0.23</td>
<td>0.26</td>
<td>0.29</td>
<td>0.32</td>
<td>0.35</td>
<td>0.38</td>
<td>0.41</td>
<td>0.55</td>
<td>0.68</td>
<td>0.82</td>
</tr>
<tr>
<td>9</td>
<td>0.17</td>
<td>0.17</td>
<td>0.19</td>
<td>0.25</td>
<td>0.28</td>
<td>0.31</td>
<td>0.34</td>
<td>0.37</td>
<td>0.40</td>
<td>0.43</td>
<td>0.57</td>
<td>0.70</td>
<td>0.84</td>
</tr>
<tr>
<td>10</td>
<td>0.19</td>
<td>0.19</td>
<td>0.21</td>
<td>0.27</td>
<td>0.30</td>
<td>0.33</td>
<td>0.36</td>
<td>0.39</td>
<td>0.42</td>
<td>0.45</td>
<td>0.59</td>
<td>0.72</td>
<td>0.86</td>
</tr>
</tbody>
</table>

Note: Formulas used for calculations is as follows:

\[w = \left(\frac{W}{3} \right) \left(\frac{5280}{2000} \right) R = 0.2933 RW \]

Where:
- \(R \) = Rate of application in lbs per sq yd
- \(W \) = Width of application in feet

364
<table>
<thead>
<tr>
<th>Lbs Per Sq Yd</th>
<th>Width—Feet</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
<th>15</th>
<th>16</th>
<th>17</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>113</td>
<td>100</td>
<td>90.0</td>
<td>81.8</td>
<td>75.0</td>
<td>69.2</td>
<td>64.3</td>
<td>60.0</td>
<td>56.3</td>
<td>52.9</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>90.0</td>
<td>80.0</td>
<td>72.0</td>
<td>65.5</td>
<td>60.0</td>
<td>55.4</td>
<td>51.4</td>
<td>48.0</td>
<td>45.0</td>
<td>42.4</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>75.0</td>
<td>66.7</td>
<td>60.0</td>
<td>54.5</td>
<td>50.0</td>
<td>46.2</td>
<td>42.9</td>
<td>40.4</td>
<td>37.5</td>
<td>35.3</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>64.3</td>
<td>57.1</td>
<td>51.4</td>
<td>46.8</td>
<td>42.9</td>
<td>39.6</td>
<td>36.7</td>
<td>34.3</td>
<td>32.1</td>
<td>30.3</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>56.3</td>
<td>49.0</td>
<td>45.0</td>
<td>40.9</td>
<td>37.5</td>
<td>34.6</td>
<td>32.1</td>
<td>30.0</td>
<td>28.1</td>
<td>26.5</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>50.0</td>
<td>44.4</td>
<td>40.0</td>
<td>36.4</td>
<td>33.3</td>
<td>30.8</td>
<td>28.6</td>
<td>26.7</td>
<td>25.0</td>
<td>23.5</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>45.0</td>
<td>40.0</td>
<td>36.0</td>
<td>32.7</td>
<td>30.0</td>
<td>27.7</td>
<td>25.7</td>
<td>24.0</td>
<td>22.5</td>
<td>21.2</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>37.2</td>
<td>33.3</td>
<td>30.0</td>
<td>27.3</td>
<td>25.0</td>
<td>23.1</td>
<td>21.4</td>
<td>20.0</td>
<td>18.8</td>
<td>17.6</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>32.1</td>
<td>28.6</td>
<td>25.7</td>
<td>23.4</td>
<td>21.4</td>
<td>19.8</td>
<td>18.4</td>
<td>17.1</td>
<td>16.1</td>
<td>15.1</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>28.1</td>
<td>25.0</td>
<td>22.5</td>
<td>20.5</td>
<td>18.8</td>
<td>17.3</td>
<td>16.1</td>
<td>15.0</td>
<td>14.3</td>
<td>13.2</td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>25.0</td>
<td>22.2</td>
<td>20.0</td>
<td>18.2</td>
<td>16.7</td>
<td>15.4</td>
<td>14.3</td>
<td>13.3</td>
<td>12.5</td>
<td>11.8</td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>22.5</td>
<td>20.0</td>
<td>18.4</td>
<td>16.4</td>
<td>15.0</td>
<td>13.8</td>
<td>12.9</td>
<td>12.0</td>
<td>11.3</td>
<td>10.6</td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>18.8</td>
<td>16.7</td>
<td>15.0</td>
<td>13.6</td>
<td>12.5</td>
<td>11.5</td>
<td>10.7</td>
<td>10.0</td>
<td>9.4</td>
<td>8.8</td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>16.1</td>
<td>14.3</td>
<td>12.9</td>
<td>11.7</td>
<td>10.7</td>
<td>9.9</td>
<td>9.2</td>
<td>8.6</td>
<td>8.0</td>
<td>7.6</td>
<td></td>
</tr>
<tr>
<td>32</td>
<td>14.1</td>
<td>12.3</td>
<td>11.3</td>
<td>10.2</td>
<td>9.4</td>
<td>8.7</td>
<td>8.0</td>
<td>7.5</td>
<td>7.0</td>
<td>6.6</td>
<td></td>
</tr>
</tbody>
</table>

Note: Formula used for calculation:

\[L = \frac{20000W}{W} \]

Where:
- **L** = Lineal feet covered by one ton of material
- **R** = Rate of spread in lbs per 50 Yd
- **W** = Width of spread in feet
TABLE XV-25
CUBIC YARDS OF MATERIAL REQUIRED FOR VARIOUS WIDTHS AND DEPTHS PER 100 LINEAR FEET AND PER MILE

<table>
<thead>
<tr>
<th>Width, Feet</th>
<th>Per 100 Linear Feet</th>
<th>Per Mile</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.31</td>
<td>0.3086</td>
</tr>
<tr>
<td>2</td>
<td>0.62</td>
<td>0.617</td>
</tr>
<tr>
<td>3</td>
<td>0.93</td>
<td>0.926</td>
</tr>
<tr>
<td>4</td>
<td>1.23</td>
<td>1.235</td>
</tr>
<tr>
<td>5</td>
<td>1.54</td>
<td>1.555</td>
</tr>
<tr>
<td>6</td>
<td>1.85</td>
<td>1.869</td>
</tr>
<tr>
<td>7</td>
<td>2.16</td>
<td>2.183</td>
</tr>
<tr>
<td>8</td>
<td>2.47</td>
<td>2.487</td>
</tr>
<tr>
<td>9</td>
<td>2.78</td>
<td>2.801</td>
</tr>
<tr>
<td>10</td>
<td>3.09</td>
<td>3.012</td>
</tr>
</tbody>
</table>

Depth—Inches

<table>
<thead>
<tr>
<th>Width, Feet</th>
<th>Per 100 Linear Feet</th>
<th>Per Mile</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.31</td>
<td>0.3086</td>
</tr>
<tr>
<td>2</td>
<td>0.62</td>
<td>0.617</td>
</tr>
<tr>
<td>3</td>
<td>0.93</td>
<td>0.926</td>
</tr>
<tr>
<td>4</td>
<td>1.23</td>
<td>1.235</td>
</tr>
<tr>
<td>5</td>
<td>1.54</td>
<td>1.555</td>
</tr>
<tr>
<td>6</td>
<td>1.85</td>
<td>1.869</td>
</tr>
<tr>
<td>7</td>
<td>2.16</td>
<td>2.183</td>
</tr>
<tr>
<td>8</td>
<td>2.47</td>
<td>2.487</td>
</tr>
<tr>
<td>9</td>
<td>2.78</td>
<td>2.801</td>
</tr>
<tr>
<td>10</td>
<td>3.09</td>
<td>3.012</td>
</tr>
</tbody>
</table>

Note: Formulas used for calculation:

- **Per 100 Lin Ft:** \(q = \left(\frac{D}{36} \right) \left(\frac{W}{3} \right) \left(\frac{100}{3} \right) = 0.3086DW \)
- **Per Mile:** \(q = \left(\frac{D}{36} \right) \left(\frac{W}{3} \right) \left(\frac{5280}{3} \right) = 16.2963DW \)

Where:
- \(q \) = Quantity of material in cubic yards
- \(D \) = Depth in inches
- \(W \) = Width in feet
TABLE XV-26
SPECIFIC GRAVITY AND DENSITY
OF
MISCELLANEOUS SOLIDS AND LIQUIDS

Important Note

The specific gravity and density of most materials included in this table will vary through a range of values. Accordingly, ranges are indicated. Such ranges, however, are not necessarily inclusive as values will occasionally be encountered which will fall outside the indicated range.

Where solids are concerned, the specific gravity and density shown are for the material in solid form. To determine the density or unit weight of the material in crushed or granular form, it is also necessary to know the void content which, in turn, depends upon the gradation and degree of compaction of such materials. Knowing the void content and specific gravity, the bulk density or unit weight of the material in crushed or granular form may be obtained from Table XV-19.

It is preferable to determine both the specific gravity and the void content by appropriate test. The data provided below should therefore be used only for estimating purposes.

Specific Gravities and Densities of Miscellaneous Solid and Liquid Materials

<table>
<thead>
<tr>
<th>Material</th>
<th>Sp Gr</th>
<th>Weight lbs/ft³</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alcohol, ethyl, pure</td>
<td>0.79</td>
<td>492</td>
</tr>
<tr>
<td>Aluminum</td>
<td>2.53-2.80</td>
<td>159-175</td>
</tr>
<tr>
<td>Aluminum oxide</td>
<td>2.95-3.00</td>
<td>159-175</td>
</tr>
<tr>
<td>Asbestos</td>
<td>2.1-2.8</td>
<td>131-175</td>
</tr>
<tr>
<td>Asbestos paper</td>
<td>2.6-3.0</td>
<td>130-220</td>
</tr>
<tr>
<td>Asbestos sheet</td>
<td>2.6-3.0</td>
<td>130-220</td>
</tr>
<tr>
<td>Asphalt cement</td>
<td>0.99-1.04</td>
<td>61.8-64.9</td>
</tr>
<tr>
<td>Asphalt, liquid</td>
<td>0.92-1.01</td>
<td>57.4-63.0</td>
</tr>
<tr>
<td>Asphalt, natural</td>
<td>1.00-1.42</td>
<td>62.4-88.6</td>
</tr>
<tr>
<td>Basalt</td>
<td>2.7-3.2</td>
<td>168-200</td>
</tr>
<tr>
<td>Benzene</td>
<td>0.73-0.75</td>
<td>45.6-46.8</td>
</tr>
<tr>
<td>Brass</td>
<td>8.4-8.7</td>
<td>524-543</td>
</tr>
<tr>
<td>Brick, building</td>
<td>1.4-1.9</td>
<td>87-119</td>
</tr>
<tr>
<td>Brick, paving</td>
<td>1.8-2.3</td>
<td>112-114</td>
</tr>
<tr>
<td>Bronze</td>
<td>2.4-4.9</td>
<td>462-550</td>
</tr>
<tr>
<td>Calcium carbonate, pure</td>
<td>2.71</td>
<td></td>
</tr>
<tr>
<td>Calcium chloride (anhydrous)</td>
<td>2.13</td>
<td></td>
</tr>
<tr>
<td>Carbon black</td>
<td>1.8-2.1</td>
<td></td>
</tr>
<tr>
<td>Carbon disulphide</td>
<td>1.26</td>
<td>78.7</td>
</tr>
<tr>
<td>Carbon tetrachloride</td>
<td>2.16-2.48</td>
<td>135-155</td>
</tr>
<tr>
<td>Cement, portland</td>
<td>3.1-3.2</td>
<td>94</td>
</tr>
<tr>
<td>Cement, portland, loose</td>
<td>3.1-3.2</td>
<td>94</td>
</tr>
<tr>
<td>Cement mortar, portland</td>
<td>3.1-3.2</td>
<td>94</td>
</tr>
<tr>
<td>Cinder</td>
<td>2.5-2.7</td>
<td>40-45</td>
</tr>
<tr>
<td>Clay</td>
<td>2.5-2.7</td>
<td>40-45</td>
</tr>
<tr>
<td>Coal</td>
<td>1.2-1.5</td>
<td>75-93</td>
</tr>
<tr>
<td>Concrete, asphalt</td>
<td>2.16-2.48</td>
<td>135-155</td>
</tr>
<tr>
<td>Concrete, portland cement</td>
<td>2.2-2.4</td>
<td>137-150</td>
</tr>
<tr>
<td>Copper</td>
<td>8.8-8.95</td>
<td>549-559</td>
</tr>
<tr>
<td>Cork</td>
<td>0.22-0.26</td>
<td>13-16</td>
</tr>
<tr>
<td>Creosote</td>
<td>1.03-1.08</td>
<td>64.3-67.4</td>
</tr>
<tr>
<td>Dolomite</td>
<td>2.8-2.9</td>
<td>174-181</td>
</tr>
<tr>
<td>Earth, loamy, dry</td>
<td>2.3-2.7</td>
<td>156-168</td>
</tr>
</tbody>
</table>

--- 370 ---

TABLE XV-26—(Continued)
SPECIFIC GRAVITY AND DENSITY
OF
MISCELLANEOUS SOLIDS AND LIQUIDS

<table>
<thead>
<tr>
<th>Material</th>
<th>Sp Gr</th>
<th>Weight lbs/ft³</th>
</tr>
</thead>
<tbody>
<tr>
<td>Felt</td>
<td>16-21</td>
<td></td>
</tr>
<tr>
<td>Gasoline</td>
<td>0.70-0.75</td>
<td>43.7-46.8</td>
</tr>
<tr>
<td>Graphite</td>
<td>2.4-2.8</td>
<td>150-158</td>
</tr>
<tr>
<td>Granite</td>
<td>2.6-2.9</td>
<td>162-181</td>
</tr>
<tr>
<td>Graphite</td>
<td>2.1-2.7</td>
<td>143-168</td>
</tr>
<tr>
<td>Gravel</td>
<td>2.0-2.7</td>
<td>143-168</td>
</tr>
<tr>
<td>Gypsum, calcined</td>
<td>1.81</td>
<td></td>
</tr>
<tr>
<td>Ice</td>
<td>1.08-0.92</td>
<td>55-58</td>
</tr>
<tr>
<td>Iron, cast, pig</td>
<td>7.2</td>
<td>450</td>
</tr>
<tr>
<td>Iron, wrought</td>
<td>7.6-7.9</td>
<td>474-493</td>
</tr>
<tr>
<td>Kerosene</td>
<td>0.78-0.82</td>
<td>48.7-51.2</td>
</tr>
<tr>
<td>Lead</td>
<td>11.54</td>
<td>707.9</td>
</tr>
<tr>
<td>Leather</td>
<td>0.88-1.02</td>
<td>53-64</td>
</tr>
<tr>
<td>Limestone</td>
<td>2.1-2.8</td>
<td>131-175</td>
</tr>
<tr>
<td>Lime, quick, calcium oxide</td>
<td>2.62</td>
<td></td>
</tr>
<tr>
<td>Lime, hydrated or slaked</td>
<td>2.20</td>
<td></td>
</tr>
<tr>
<td>Lignite</td>
<td>0.86-0.94</td>
<td>53.7-58.7</td>
</tr>
<tr>
<td>Mercury at 20°C</td>
<td>11.546</td>
<td>845.65</td>
</tr>
<tr>
<td>Mica, muscovite</td>
<td>2.7-3.1</td>
<td>108-194</td>
</tr>
<tr>
<td>Naphtha, petroleum ether</td>
<td>0.61-0.66</td>
<td>39.3-41.2</td>
</tr>
<tr>
<td>Paraffin wax</td>
<td>0.85-0.95</td>
<td>53.0-59.3</td>
</tr>
<tr>
<td>Penet</td>
<td>0.91-1.04</td>
<td>56.8-64.9</td>
</tr>
<tr>
<td>Petroleum</td>
<td>1.07-1.15</td>
<td>67-72</td>
</tr>
<tr>
<td>Pitch</td>
<td>2.5-2.8</td>
<td>156-175</td>
</tr>
<tr>
<td>Quartz, flint</td>
<td>2.5-2.7</td>
<td>125-168</td>
</tr>
<tr>
<td>Rubber, linseed</td>
<td>0.92-0.96</td>
<td>57-64</td>
</tr>
<tr>
<td>Salt (sodium chloride)</td>
<td>2.16</td>
<td>114.8</td>
</tr>
<tr>
<td>Sand</td>
<td>2.5-2.7</td>
<td>125-168</td>
</tr>
<tr>
<td>Sunburst</td>
<td>3.0-3.7</td>
<td>125-168</td>
</tr>
<tr>
<td>Slate</td>
<td>2.6-2.9</td>
<td>162-181</td>
</tr>
<tr>
<td>Stag, granulated</td>
<td>1.4-1.6</td>
<td></td>
</tr>
<tr>
<td>Stag, blast furnace</td>
<td>2.0-2.5</td>
<td></td>
</tr>
<tr>
<td>Steel</td>
<td>7.8-7.9</td>
<td>487-493</td>
</tr>
<tr>
<td>Tar</td>
<td>0.93-1.25</td>
<td>59-78</td>
</tr>
<tr>
<td>Timber (air dry)</td>
<td>0.48-0.55</td>
<td>30-34</td>
</tr>
<tr>
<td>Fir, Douglas</td>
<td>0.74</td>
<td>46.2</td>
</tr>
<tr>
<td>Pines, Southern</td>
<td>0.61-0.67</td>
<td>38-42</td>
</tr>
<tr>
<td>Redwood, California</td>
<td>0.42</td>
<td>26.3</td>
</tr>
<tr>
<td>Trap Rock</td>
<td>2.7-3.2</td>
<td>168-200</td>
</tr>
<tr>
<td>Water, distilled, 39.2°F (+4°C)</td>
<td>1.00</td>
<td>62.43</td>
</tr>
<tr>
<td>Water, sea</td>
<td>1.02-1.04</td>
<td>63.6-64.9</td>
</tr>
</tbody>
</table>
TABLE XV-27
CONVERSION OF LINEAR MEASUREMENTS
FEET TO MILES AND MILES TO FEET

<table>
<thead>
<tr>
<th>Miles</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>Feet</td>
<td>0.00019</td>
<td>0.00028</td>
<td>0.00057</td>
<td>0.00075</td>
<td>0.00095</td>
<td>0.00113</td>
<td>0.00133</td>
<td>0.00152</td>
<td>0.00171</td>
</tr>
<tr>
<td>Miles</td>
<td>10</td>
<td>20</td>
<td>30</td>
<td>40</td>
<td>50</td>
<td>60</td>
<td>70</td>
<td>80</td>
<td>90</td>
</tr>
<tr>
<td>Feet</td>
<td>0.00190</td>
<td>0.00379</td>
<td>0.00568</td>
<td>0.00757</td>
<td>0.00947</td>
<td>0.01136</td>
<td>0.01325</td>
<td>0.01515</td>
<td>0.01705</td>
</tr>
<tr>
<td>Feet</td>
<td>100</td>
<td>200</td>
<td>300</td>
<td>400</td>
<td>500</td>
<td>600</td>
<td>700</td>
<td>800</td>
<td>900</td>
</tr>
<tr>
<td>Miles</td>
<td>0.00894</td>
<td>0.01787</td>
<td>0.02686</td>
<td>0.03576</td>
<td>0.04470</td>
<td>0.05363</td>
<td>0.06256</td>
<td>0.07149</td>
<td>0.08042</td>
</tr>
<tr>
<td>Feet</td>
<td>1000</td>
<td>2000</td>
<td>3000</td>
<td>4000</td>
<td>5000</td>
<td>6000</td>
<td>7000</td>
<td>8000</td>
<td>9000</td>
</tr>
<tr>
<td>Miles</td>
<td>0.08940</td>
<td>0.17879</td>
<td>0.26876</td>
<td>0.35775</td>
<td>0.44676</td>
<td>0.53577</td>
<td>0.62478</td>
<td>0.71379</td>
<td>0.80279</td>
</tr>
<tr>
<td>Feet</td>
<td>10000</td>
<td>20000</td>
<td>30000</td>
<td>40000</td>
<td>50000</td>
<td>60000</td>
<td>70000</td>
<td>80000</td>
<td>90000</td>
</tr>
<tr>
<td>Miles</td>
<td>0.89940</td>
<td>1.78790</td>
<td>2.68757</td>
<td>3.57754</td>
<td>4.46716</td>
<td>5.35724</td>
<td>6.24722</td>
<td>7.13720</td>
<td>8.02718</td>
</tr>
</tbody>
</table>

TABLE XV-28
CONVERSION OF LINEAR MEASUREMENTS
DECIMALS OF AN INCH FOR EACH 1/64 INCH

<table>
<thead>
<tr>
<th>Fraction</th>
<th>1/64ths</th>
<th>Decimal</th>
<th>Millimeters (approx.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.015625</td>
<td>0.397</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>0.03125</td>
<td>0.794</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>0.046875</td>
<td>1.191</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>0.0625</td>
<td>1.588</td>
<td>4</td>
</tr>
<tr>
<td>5</td>
<td>0.078125</td>
<td>1.984</td>
<td>5</td>
</tr>
<tr>
<td>6</td>
<td>0.09375</td>
<td>2.381</td>
<td>6</td>
</tr>
<tr>
<td>7</td>
<td>0.109375</td>
<td>2.778</td>
<td>7</td>
</tr>
<tr>
<td>8</td>
<td>0.125</td>
<td>3.175</td>
<td>8</td>
</tr>
<tr>
<td>9</td>
<td>0.140625</td>
<td>3.572</td>
<td>9</td>
</tr>
<tr>
<td>10</td>
<td>0.15625</td>
<td>3.969</td>
<td>10</td>
</tr>
<tr>
<td>11</td>
<td>0.171875</td>
<td>4.366</td>
<td>11</td>
</tr>
<tr>
<td>12</td>
<td>0.1875</td>
<td>4.763</td>
<td>12</td>
</tr>
<tr>
<td>13</td>
<td>0.203125</td>
<td>5.159</td>
<td>13</td>
</tr>
<tr>
<td>14</td>
<td>0.21875</td>
<td>5.556</td>
<td>14</td>
</tr>
<tr>
<td>15</td>
<td>0.234375</td>
<td>5.953</td>
<td>15</td>
</tr>
<tr>
<td>16</td>
<td>0.250</td>
<td>6.350</td>
<td>16</td>
</tr>
<tr>
<td>17</td>
<td>0.265625</td>
<td>6.747</td>
<td>17</td>
</tr>
<tr>
<td>18</td>
<td>0.28125</td>
<td>7.144</td>
<td>18</td>
</tr>
<tr>
<td>19</td>
<td>0.296875</td>
<td>7.541</td>
<td>19</td>
</tr>
<tr>
<td>20</td>
<td>0.3125</td>
<td>7.938</td>
<td>20</td>
</tr>
<tr>
<td>21</td>
<td>0.328125</td>
<td>8.334</td>
<td>21</td>
</tr>
<tr>
<td>22</td>
<td>0.34375</td>
<td>8.731</td>
<td>22</td>
</tr>
<tr>
<td>23</td>
<td>0.359375</td>
<td>9.128</td>
<td>23</td>
</tr>
<tr>
<td>24</td>
<td>0.375</td>
<td>9.525</td>
<td>24</td>
</tr>
<tr>
<td>25</td>
<td>0.390625</td>
<td>9.922</td>
<td>25</td>
</tr>
<tr>
<td>26</td>
<td>0.40625</td>
<td>10.319</td>
<td>26</td>
</tr>
<tr>
<td>27</td>
<td>0.421875</td>
<td>10.716</td>
<td>27</td>
</tr>
<tr>
<td>28</td>
<td>0.4375</td>
<td>11.113</td>
<td>28</td>
</tr>
<tr>
<td>29</td>
<td>0.453125</td>
<td>11.509</td>
<td>29</td>
</tr>
<tr>
<td>30</td>
<td>0.46875</td>
<td>11.906</td>
<td>30</td>
</tr>
<tr>
<td>31</td>
<td>0.484375</td>
<td>12.303</td>
<td>31</td>
</tr>
<tr>
<td>32</td>
<td>0.500</td>
<td>12.700</td>
<td>32</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Fraction</th>
<th>1/64ths</th>
<th>Decimal</th>
<th>Millimeters (approx.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/4</td>
<td>0.015625</td>
<td>0.397</td>
<td>1</td>
</tr>
<tr>
<td>1/3</td>
<td>0.046875</td>
<td>1.191</td>
<td>3</td>
</tr>
<tr>
<td>2/3</td>
<td>0.0625</td>
<td>1.588</td>
<td>6</td>
</tr>
<tr>
<td>1/2</td>
<td>0.078125</td>
<td>1.984</td>
<td>12</td>
</tr>
<tr>
<td>3/4</td>
<td>0.109375</td>
<td>2.778</td>
<td>18</td>
</tr>
<tr>
<td>5/8</td>
<td>0.125</td>
<td>3.175</td>
<td>24</td>
</tr>
<tr>
<td>3/5</td>
<td>0.140625</td>
<td>3.572</td>
<td>30</td>
</tr>
<tr>
<td>7/16</td>
<td>0.15625</td>
<td>3.969</td>
<td>36</td>
</tr>
<tr>
<td>11/32</td>
<td>0.1875</td>
<td>4.763</td>
<td>48</td>
</tr>
<tr>
<td>9/16</td>
<td>0.21875</td>
<td>5.556</td>
<td>60</td>
</tr>
<tr>
<td>13/32</td>
<td>0.250</td>
<td>6.350</td>
<td>72</td>
</tr>
<tr>
<td>7/8</td>
<td>0.28125</td>
<td>7.144</td>
<td>84</td>
</tr>
<tr>
<td>15/32</td>
<td>0.3125</td>
<td>7.938</td>
<td>96</td>
</tr>
<tr>
<td>11/16</td>
<td>0.34375</td>
<td>8.731</td>
<td>108</td>
</tr>
<tr>
<td>19/32</td>
<td>0.375</td>
<td>9.525</td>
<td>120</td>
</tr>
<tr>
<td>13/16</td>
<td>0.40625</td>
<td>10.319</td>
<td>132</td>
</tr>
<tr>
<td>21/32</td>
<td>0.4375</td>
<td>11.113</td>
<td>144</td>
</tr>
<tr>
<td>3/4</td>
<td>0.46875</td>
<td>11.906</td>
<td>156</td>
</tr>
<tr>
<td>31/32</td>
<td>0.500</td>
<td>12.700</td>
<td>168</td>
</tr>
</tbody>
</table>
TABLE XV-29 (Continued)

CONVERSION OF LINEAR MEASUREMENTS
DECIMALS OF A FOOT FOR EACH ⅛ INCH TO 12 INCHES

<table>
<thead>
<tr>
<th>Inch</th>
<th>0°</th>
<th>1°</th>
<th>2°</th>
<th>3°</th>
<th>4°</th>
<th>5°</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0.833</td>
<td>1.667</td>
<td>2.500</td>
<td>3.333</td>
<td>4.167</td>
</tr>
<tr>
<td>1/16</td>
<td>0.0026</td>
<td>0.0859</td>
<td>0.1693</td>
<td>0.2526</td>
<td>0.3359</td>
<td>0.4193</td>
</tr>
<tr>
<td>1/8</td>
<td>0.032</td>
<td>0.0885</td>
<td>0.1719</td>
<td>0.2552</td>
<td>0.3385</td>
<td>0.4219</td>
</tr>
<tr>
<td>3/32</td>
<td>0.078</td>
<td>0.1911</td>
<td>0.3822</td>
<td>0.5733</td>
<td>0.7644</td>
<td>0.9555</td>
</tr>
<tr>
<td>1/4</td>
<td>0.144</td>
<td>0.3822</td>
<td>0.5733</td>
<td>0.7644</td>
<td>0.9555</td>
<td>1.1466</td>
</tr>
<tr>
<td>5/32</td>
<td>0.211</td>
<td>0.5653</td>
<td>0.7565</td>
<td>0.9476</td>
<td>1.1387</td>
<td>1.3307</td>
</tr>
<tr>
<td>3/16</td>
<td>0.288</td>
<td>0.7484</td>
<td>0.9395</td>
<td>1.1306</td>
<td>1.3217</td>
<td>1.5127</td>
</tr>
<tr>
<td>7/32</td>
<td>0.365</td>
<td>0.9316</td>
<td>1.1227</td>
<td>1.3137</td>
<td>1.5048</td>
<td>1.6959</td>
</tr>
<tr>
<td>1/2</td>
<td>0.500</td>
<td>1.250</td>
<td>1.441</td>
<td>1.632</td>
<td>1.823</td>
<td>2.014</td>
</tr>
<tr>
<td>9/32</td>
<td>0.635</td>
<td>1.577</td>
<td>1.768</td>
<td>1.959</td>
<td>2.150</td>
<td>2.341</td>
</tr>
<tr>
<td>5/16</td>
<td>0.719</td>
<td>1.768</td>
<td>1.959</td>
<td>2.150</td>
<td>2.341</td>
<td>2.532</td>
</tr>
<tr>
<td>11/32</td>
<td>0.833</td>
<td>2.085</td>
<td>2.276</td>
<td>2.467</td>
<td>2.658</td>
<td>2.849</td>
</tr>
<tr>
<td>7/16</td>
<td>1.250</td>
<td>3.000</td>
<td>3.291</td>
<td>3.482</td>
<td>3.673</td>
<td>3.864</td>
</tr>
<tr>
<td>15/32</td>
<td>1.500</td>
<td>3.750</td>
<td>4.041</td>
<td>4.332</td>
<td>4.623</td>
<td>4.914</td>
</tr>
<tr>
<td>1/4</td>
<td>1.667</td>
<td>4.000</td>
<td>4.333</td>
<td>4.666</td>
<td>4.999</td>
<td>5.333</td>
</tr>
</tbody>
</table>

TABLE XV-29 (Continued)

CONVERSION OF LINEAR MEASUREMENTS
DECIMALS OF A FOOT FOR EACH ⅛ INCH TO 12 INCHES

<table>
<thead>
<tr>
<th>Inch</th>
<th>0°</th>
<th>1°</th>
<th>2°</th>
<th>3°</th>
<th>4°</th>
<th>5°</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.500</td>
<td>0.583</td>
<td>0.667</td>
<td>0.750</td>
<td>0.833</td>
<td>0.917</td>
</tr>
<tr>
<td>1/2</td>
<td>0.750</td>
<td>0.833</td>
<td>0.917</td>
<td>1.000</td>
<td>1.083</td>
<td>1.167</td>
</tr>
<tr>
<td>5/8</td>
<td>1.000</td>
<td>1.083</td>
<td>1.167</td>
<td>1.250</td>
<td>1.333</td>
<td>1.417</td>
</tr>
<tr>
<td>3/4</td>
<td>1.500</td>
<td>1.583</td>
<td>1.667</td>
<td>1.750</td>
<td>1.833</td>
<td>1.917</td>
</tr>
<tr>
<td>7/8</td>
<td>2.000</td>
<td>2.083</td>
<td>2.167</td>
<td>2.250</td>
<td>2.333</td>
<td>2.417</td>
</tr>
<tr>
<td>1</td>
<td>2.500</td>
<td>2.583</td>
<td>2.667</td>
<td>2.750</td>
<td>2.833</td>
<td>2.917</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Inch</th>
<th>0°</th>
<th>1°</th>
<th>2°</th>
<th>3°</th>
<th>4°</th>
<th>5°</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1.000</td>
<td>1.188</td>
<td>1.375</td>
<td>1.562</td>
<td>1.750</td>
<td>1.937</td>
</tr>
<tr>
<td>1/2</td>
<td>1.500</td>
<td>1.688</td>
<td>1.875</td>
<td>2.062</td>
<td>2.250</td>
<td>2.437</td>
</tr>
<tr>
<td>5/8</td>
<td>2.000</td>
<td>2.188</td>
<td>2.375</td>
<td>2.562</td>
<td>2.750</td>
<td>2.937</td>
</tr>
<tr>
<td>3/4</td>
<td>2.500</td>
<td>2.688</td>
<td>2.875</td>
<td>3.062</td>
<td>3.250</td>
<td>3.437</td>
</tr>
<tr>
<td>7/8</td>
<td>3.000</td>
<td>3.188</td>
<td>3.375</td>
<td>3.562</td>
<td>3.750</td>
<td>3.937</td>
</tr>
<tr>
<td>1</td>
<td>3.500</td>
<td>3.688</td>
<td>3.875</td>
<td>4.062</td>
<td>4.250</td>
<td>4.437</td>
</tr>
</tbody>
</table>
Table XV-30
CONVERSION FACTORS—LENGTH MEASUREMENTS

<table>
<thead>
<tr>
<th>Units</th>
<th>Inches</th>
<th>Feet</th>
<th>Yards</th>
<th>Rods</th>
<th>Miles</th>
<th>Meters</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Inch</td>
<td>1</td>
<td>0.08333</td>
<td>0.027778</td>
<td>0.005051</td>
<td>0.0000157828</td>
<td>0.0254</td>
</tr>
<tr>
<td>1 Foot</td>
<td>12</td>
<td>1</td>
<td>0.33333</td>
<td>0.0666666</td>
<td>0.000068182</td>
<td>0.0914402</td>
</tr>
<tr>
<td>1 Yard</td>
<td>36</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>0.181818</td>
<td>5.0299216</td>
</tr>
<tr>
<td>1 Rod (Surveyor’s Measure)</td>
<td>198</td>
<td>16.5</td>
<td>5.5</td>
<td>1</td>
<td>0.092105</td>
<td>5.0299216</td>
</tr>
<tr>
<td>1 Mile (U.S. Statute)</td>
<td>63360</td>
<td>5280</td>
<td>1760</td>
<td>320</td>
<td>0.199838</td>
<td>1.099347</td>
</tr>
<tr>
<td>1 Meter</td>
<td>39.37</td>
<td>3.280833</td>
<td>1.093611</td>
<td>0.199838</td>
<td>0.000067137</td>
<td>0.201168</td>
</tr>
<tr>
<td>1 Link</td>
<td>7.92</td>
<td>0.66</td>
<td>0.22</td>
<td>0.04</td>
<td>0.0199944</td>
<td>0.00125</td>
</tr>
<tr>
<td>1 Chain (Surveyor’s)</td>
<td>792</td>
<td>66</td>
<td>22</td>
<td>4</td>
<td>0.0199944</td>
<td>0.00125</td>
</tr>
<tr>
<td>1 Statute</td>
<td>1200</td>
<td>100</td>
<td>33.333</td>
<td>6.60606</td>
<td>0.0199944</td>
<td>0.00125</td>
</tr>
<tr>
<td>1 Furlong</td>
<td>7920</td>
<td>660</td>
<td>220</td>
<td>46</td>
<td>0.0199944</td>
<td>0.00125</td>
</tr>
<tr>
<td>1 Mil (Nautical)</td>
<td>79213</td>
<td>6761.03</td>
<td>2025.366</td>
<td>318.248</td>
<td>1.15078</td>
<td>0.01988</td>
</tr>
<tr>
<td>1 Millimeter</td>
<td>0.03937</td>
<td>0.003281</td>
<td>0.0001094</td>
<td>0.0000199</td>
<td>—</td>
<td>0.0031</td>
</tr>
<tr>
<td>1 Centimeter</td>
<td>0.3937</td>
<td>0.032808</td>
<td>0.010936</td>
<td>0.001988</td>
<td>—</td>
<td>0.01</td>
</tr>
<tr>
<td>1 Kilometer</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>1000</td>
</tr>
</tbody>
</table>

Table XV-31
CONVERSION FACTORS—AREA MEASUREMENTS

<table>
<thead>
<tr>
<th>Units</th>
<th>Square Inches</th>
<th>Square Feet</th>
<th>Square Yards</th>
<th>Square Rods</th>
<th>Acres</th>
<th>Square Miles</th>
<th>Square Meters</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Square Inch</td>
<td>1</td>
<td>0.006944</td>
<td>0.0007716</td>
<td>0.0036731</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>1 Square Foot</td>
<td>144</td>
<td>1</td>
<td>0.11111</td>
<td>0.0333358</td>
<td>0.0002046</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>1 Square Yard</td>
<td>1296</td>
<td>9</td>
<td>1</td>
<td>1</td>
<td>0.00625</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>1 Square Rod</td>
<td>39204</td>
<td>322.5</td>
<td>32.25</td>
<td>1</td>
<td>1.0</td>
<td>0.01525</td>
<td>25.29295</td>
</tr>
<tr>
<td>1 Acre</td>
<td>43560</td>
<td>4440</td>
<td>484</td>
<td>160</td>
<td>1.640</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>1 Square Mile</td>
<td>627264</td>
<td>6761.03</td>
<td>11959.85</td>
<td>39536.7</td>
<td>2471044</td>
<td>0.003861</td>
<td>10000000</td>
</tr>
<tr>
<td>1 Square Centimeter</td>
<td>0.1549997</td>
<td>0.0010764</td>
<td>0.001196</td>
<td>0.0022956</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>1 Hectare</td>
<td>107638.7</td>
<td>119598.5</td>
<td>39536.7</td>
<td>2471044</td>
<td>0.3861006</td>
<td>10000000</td>
<td>—</td>
</tr>
<tr>
<td>1 Square Kilometer</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
</tbody>
</table>
TABLE XV.32
CONVERSION FACTORS—VOLUME MEASUREMENTS

<table>
<thead>
<tr>
<th>Units</th>
<th>Cubic Inches</th>
<th>Cubic Feet</th>
<th>Cubic Yards</th>
<th>Pints (Liquid)</th>
<th>Quarts (Liquid)</th>
<th>Gallons (U.S.)</th>
<th>Liters (1000 cc)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Cubic Inch</td>
<td>1</td>
<td>0.000579</td>
<td>0.0000214</td>
<td>0.034632</td>
<td>0.017316</td>
<td>0.004329</td>
<td>0.0016387</td>
</tr>
<tr>
<td>1 Cubic Foot</td>
<td>1728</td>
<td>1</td>
<td>0.037037</td>
<td>59.844</td>
<td>29.922</td>
<td>7.4805</td>
<td>28.3125</td>
</tr>
<tr>
<td>1 Cubic Yard</td>
<td>46656</td>
<td>27</td>
<td>1</td>
<td>1015.8</td>
<td>807.9</td>
<td>201.972</td>
<td>764.34</td>
</tr>
<tr>
<td>1 Pint (Liquid)</td>
<td>28.875</td>
<td>0.016710</td>
<td>0.000619</td>
<td>0.5</td>
<td>0.25</td>
<td>0.125</td>
<td>0.071668</td>
</tr>
<tr>
<td>1 Quart (Liquid)</td>
<td>57.75</td>
<td>0.033420</td>
<td>0.001238</td>
<td>2</td>
<td>1</td>
<td>0.5</td>
<td>0.946333</td>
</tr>
<tr>
<td>1 Gallon (U.S.)</td>
<td>231</td>
<td>1.336805</td>
<td>8</td>
<td>4</td>
<td>1</td>
<td>0.25</td>
<td>3.78533</td>
</tr>
<tr>
<td>1 Liter (1000 cc)</td>
<td>61.025</td>
<td>0.035316</td>
<td>0.001308</td>
<td>2.13326</td>
<td>1.05682</td>
<td>0.264178</td>
<td>1</td>
</tr>
<tr>
<td>1 Gill</td>
<td>7.21875</td>
<td>0.004177</td>
<td>0.000155</td>
<td>0.25</td>
<td>0.125</td>
<td>0.03125</td>
<td>0.118922</td>
</tr>
<tr>
<td>1 Pint (Dry)</td>
<td>33.6023</td>
<td>0.19445</td>
<td>0.007020</td>
<td>1.13547</td>
<td>0.58123</td>
<td>0.15456</td>
<td>0.750599</td>
</tr>
<tr>
<td>1 Quart (Dry)</td>
<td>67.20625</td>
<td>0.38889</td>
<td>0.001440</td>
<td>2.37270</td>
<td>1.16564</td>
<td>0.290912</td>
<td>1.10120</td>
</tr>
<tr>
<td>1 Quart (Imperial)</td>
<td>69.3562</td>
<td>0.40133</td>
<td>0.001486</td>
<td>2.4015</td>
<td>1.209053</td>
<td>0.302238</td>
<td>1.13859</td>
</tr>
<tr>
<td>1 Gallon (Imperial)</td>
<td>277.4261</td>
<td>1.60564</td>
<td>8</td>
<td>4</td>
<td>1.209053</td>
<td>1.209053</td>
<td>4.34609</td>
</tr>
<tr>
<td>1 Peck</td>
<td>537.605</td>
<td>0.31114</td>
<td>0.011523</td>
<td>18.61835</td>
<td>9.309172</td>
<td>2.372794</td>
<td>8.809386</td>
</tr>
<tr>
<td>1 Bushel (US)</td>
<td>2159.42</td>
<td>12.444</td>
<td>0.46089</td>
<td>74.47241</td>
<td>37.23670</td>
<td>9.30927</td>
<td>35.238329</td>
</tr>
<tr>
<td>1 Board Foot</td>
<td>144</td>
<td>1.08333</td>
<td>0.003086</td>
<td>4.987012</td>
<td>2.493506</td>
<td>0.623376</td>
<td>2.3597</td>
</tr>
<tr>
<td>1 Cord</td>
<td>2711.84</td>
<td>17.8</td>
<td>0.74074</td>
<td>76.66051</td>
<td>38.80025</td>
<td>8.95506</td>
<td>36.2448</td>
</tr>
<tr>
<td>1 Barrel (Petroleum)</td>
<td>6701.975</td>
<td>56.14569</td>
<td>336</td>
<td>168</td>
<td>42</td>
<td>158.9839</td>
<td>119.237895</td>
</tr>
<tr>
<td>1 Barrel (US. Liquid)</td>
<td>7276.370</td>
<td>42.1086</td>
<td>115.96</td>
<td>232</td>
<td>126</td>
<td>31.5</td>
<td>99.9973</td>
</tr>
<tr>
<td>1 Cubic Meter</td>
<td>1000</td>
<td>61.0238</td>
<td>1.093644</td>
<td>213.34</td>
<td>105.67</td>
<td>264.178</td>
<td>999.973</td>
</tr>
</tbody>
</table>

TABLE XV.33
CONVERSION FACTORS—WEIGHT MEASUREMENTS

<table>
<thead>
<tr>
<th>Units</th>
<th>Ounces</th>
<th>Pounds</th>
<th>Tons (Short)</th>
<th>Tons (Long)</th>
<th>Kilograms</th>
<th>Tons (Metric)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Ounce</td>
<td>1</td>
<td>0.0625</td>
<td>—</td>
<td>—</td>
<td>0.0005</td>
<td>—</td>
</tr>
<tr>
<td>1 Pound</td>
<td>16</td>
<td>1</td>
<td>0.0005</td>
<td>0.0004644</td>
<td>0.0005</td>
<td>0.005</td>
</tr>
<tr>
<td>1 Ton (Short)</td>
<td>32000</td>
<td>2000</td>
<td>0.892857</td>
<td>0.4435924</td>
<td>0.907185</td>
<td>0.4435924</td>
</tr>
<tr>
<td>1 Ton (Long)</td>
<td>35840</td>
<td>2240</td>
<td>1.12</td>
<td>0.4893927</td>
<td>1.01647</td>
<td>0.4893927</td>
</tr>
<tr>
<td>1 Kilogram</td>
<td>35.2736</td>
<td>100</td>
<td>0.001023</td>
<td>0.00099824</td>
<td>0.001023</td>
<td>0.00099824</td>
</tr>
<tr>
<td>1 Hundredweight (Short)</td>
<td>1600</td>
<td>100</td>
<td>0.05</td>
<td>0.044643</td>
<td>0.05</td>
<td>0.044643</td>
</tr>
<tr>
<td>1 Hundredweight (Long)</td>
<td>1793</td>
<td>112</td>
<td>0.0356</td>
<td>0.018022</td>
<td>0.0356</td>
<td>0.018022</td>
</tr>
<tr>
<td>1 Gram</td>
<td>0.0022857</td>
<td>0.0011015</td>
<td>0.0011015</td>
<td>0.0005307</td>
<td>0.0011015</td>
<td>0.0005307</td>
</tr>
<tr>
<td>1 Milligram</td>
<td>0.0352739</td>
<td>0.002004</td>
<td>0.002004</td>
<td>0.0009901</td>
<td>0.002004</td>
<td>0.0009901</td>
</tr>
</tbody>
</table>
TABLE XV.34
CONVERSION FACTORS
MISCELLANEOUS

<table>
<thead>
<tr>
<th>Multiply</th>
<th>By</th>
<th>To Obtain</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pounds per foot</td>
<td>1.048816</td>
<td>Kilograms per meter</td>
</tr>
<tr>
<td>Pounds per square foot</td>
<td>4.44822</td>
<td>Kilograms per square meter</td>
</tr>
<tr>
<td>Pounds per square inch</td>
<td>0.07031</td>
<td>Kilograms per square cm.</td>
</tr>
<tr>
<td>Pounds per cubic foot</td>
<td>0.000907031</td>
<td>Kilograms per cubic meter</td>
</tr>
<tr>
<td>Radians</td>
<td>16.0184</td>
<td>Degrees, angular</td>
</tr>
<tr>
<td>Horsepower</td>
<td>32.7292</td>
<td>Ft-lbs per second</td>
</tr>
<tr>
<td>Horsepower</td>
<td>254.4</td>
<td>B.T.U.'s per hour</td>
</tr>
<tr>
<td>B.T.U.</td>
<td>231.98</td>
<td>Watts</td>
</tr>
<tr>
<td>Feet per second</td>
<td>777.98</td>
<td>Calories, gram</td>
</tr>
<tr>
<td>Miles per hour</td>
<td>0.68182</td>
<td>Ft-lbs</td>
</tr>
<tr>
<td>Pounds</td>
<td>1.46667</td>
<td>Miles per hour</td>
</tr>
<tr>
<td>Kilograms</td>
<td>980.665</td>
<td>Feet per minute</td>
</tr>
<tr>
<td>Atmosphere</td>
<td>1.0233</td>
<td>Feet per second</td>
</tr>
<tr>
<td>Atmosphere</td>
<td>14.697</td>
<td>lysnes</td>
</tr>
<tr>
<td>Atmosphere</td>
<td>29.921</td>
<td>Kilograms per square cm.</td>
</tr>
<tr>
<td>Atmosphere</td>
<td>0.76</td>
<td>Inches of mercury (0°C, at sea level)</td>
</tr>
<tr>
<td>Atmosphere</td>
<td>33.9</td>
<td>Meters of mercury (0°C, at sea level)</td>
</tr>
<tr>
<td>Pounds of water per minute</td>
<td>0.016021</td>
<td>Cubic feet per minute</td>
</tr>
<tr>
<td>Cubic feet per minute</td>
<td>0.12468</td>
<td>Gallons per second</td>
</tr>
<tr>
<td>Feet</td>
<td>50.0</td>
<td>Feet</td>
</tr>
<tr>
<td>Degrees per foot</td>
<td>0.00057261</td>
<td>Radial per centimeter</td>
</tr>
<tr>
<td>Cubic centimeters of mercury at 20°C</td>
<td>5.34</td>
<td>Inches of water (at 20°C)</td>
</tr>
</tbody>
</table>

TABLE XV.35
DENSITY AND VISCOSITY OF WATER
AT VARIOUS TEMPERATURES

<table>
<thead>
<tr>
<th>Temperature</th>
<th>Density gm/ml</th>
<th>Density in lbs/cu ft</th>
<th>Viscosity in Centipoises</th>
</tr>
</thead>
<tbody>
<tr>
<td>°C</td>
<td>°F</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-10</td>
<td>+14</td>
<td>0.99815</td>
<td>62.3128</td>
</tr>
<tr>
<td>-5</td>
<td>23</td>
<td>0.99930</td>
<td>62.3846</td>
</tr>
<tr>
<td>0</td>
<td>32</td>
<td>0.99987</td>
<td>62.4201</td>
</tr>
<tr>
<td>+14</td>
<td>39.20</td>
<td>1.00000</td>
<td>62.4283</td>
</tr>
<tr>
<td>5</td>
<td>41</td>
<td>0.99999</td>
<td>62.4276</td>
</tr>
<tr>
<td>10</td>
<td>50</td>
<td>0.99973</td>
<td>62.4114</td>
</tr>
<tr>
<td>15</td>
<td>59</td>
<td>0.99913</td>
<td>62.3739</td>
</tr>
<tr>
<td>20</td>
<td>68</td>
<td>0.99823</td>
<td>62.3178</td>
</tr>
<tr>
<td>20.2</td>
<td>68.36</td>
<td>0.99819</td>
<td>62.3153</td>
</tr>
<tr>
<td>25</td>
<td>77</td>
<td>0.99707</td>
<td>62.2453</td>
</tr>
<tr>
<td>30</td>
<td>86</td>
<td>0.99567</td>
<td>62.1579</td>
</tr>
<tr>
<td>35</td>
<td>95</td>
<td>0.99405</td>
<td>61.9574</td>
</tr>
<tr>
<td>40</td>
<td>104</td>
<td>0.99224</td>
<td>61.9438</td>
</tr>
<tr>
<td>45</td>
<td>113</td>
<td>0.99025</td>
<td>61.8196</td>
</tr>
<tr>
<td>50</td>
<td>122</td>
<td>0.98807</td>
<td>61.6835</td>
</tr>
<tr>
<td>55</td>
<td>131</td>
<td>0.98573</td>
<td>61.5374</td>
</tr>
<tr>
<td>60</td>
<td>140</td>
<td>0.98324</td>
<td>61.3820</td>
</tr>
<tr>
<td>65</td>
<td>149</td>
<td>0.98039</td>
<td>61.2165</td>
</tr>
<tr>
<td>70</td>
<td>158</td>
<td>0.97781</td>
<td>61.0430</td>
</tr>
<tr>
<td>75</td>
<td>167</td>
<td>0.97489</td>
<td>60.8607</td>
</tr>
<tr>
<td>80</td>
<td>176</td>
<td>0.97183</td>
<td>60.6697</td>
</tr>
<tr>
<td>85</td>
<td>185</td>
<td>0.96865</td>
<td>60.4711</td>
</tr>
<tr>
<td>90</td>
<td>194</td>
<td>0.96534</td>
<td>60.2645</td>
</tr>
<tr>
<td>95</td>
<td>203</td>
<td>0.96172</td>
<td>60.0510</td>
</tr>
<tr>
<td>100</td>
<td>212</td>
<td>0.95838</td>
<td>59.8300</td>
</tr>
</tbody>
</table>
Table XV-36

AREAS OF PLANE FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Formula</th>
<th>Example</th>
<th>Area</th>
</tr>
</thead>
<tbody>
<tr>
<td>Square</td>
<td>Diagonal = $d = 2a \sqrt{2}$</td>
<td>$a = 6$</td>
<td>$6 \times 6 = 36$</td>
</tr>
<tr>
<td></td>
<td>Area = a^2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Example, $a = 6$; $b = 3$; Area = $(6)^2 = 36$ Ans.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rectangle and Parallelogram</td>
<td>Area = ab or $b \sqrt{a^2 - b^2}$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trapezoid</td>
<td>a, b, c, d</td>
<td>$a = 4$</td>
<td>$4 \times 2 = 8$</td>
</tr>
<tr>
<td></td>
<td>Area = $\frac{1}{2}(a + b)(S - b)$</td>
<td>$b = 2$</td>
<td>$2 \times 2 = 4$</td>
</tr>
<tr>
<td>Trapezium</td>
<td>a, b, c, d</td>
<td>$c = 3$</td>
<td>$3 \times 3 = 9$</td>
</tr>
<tr>
<td></td>
<td>Area = $\frac{1}{2}(a + b)(S - b)$</td>
<td>$d = 4$</td>
<td>$4 \times 4 = 16$</td>
</tr>
<tr>
<td>Triangles</td>
<td>Both formulae apply to both figures</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Regular Polygons</td>
<td>$S = \frac{\sum a}{n}$</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table XV-36 (continued)

Circle

<table>
<thead>
<tr>
<th>Circle Formula</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>$A = \frac{d^2}{4}$</td>
<td>Area = $\frac{d^2}{4}$</td>
</tr>
<tr>
<td>$A = \pi r^2$</td>
<td>Area = πr^2</td>
</tr>
</tbody>
</table>

Segment

<table>
<thead>
<tr>
<th>Segment Formula</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>$A = \frac{1}{2}\theta r^2$</td>
<td>Area = $\frac{1}{2}\theta r^2$</td>
</tr>
</tbody>
</table>

Sector

<table>
<thead>
<tr>
<th>Sector Formula</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>$A = \frac{1}{2}\theta r^2$</td>
<td>Area = $\frac{1}{2}\theta r^2$</td>
</tr>
</tbody>
</table>
Table XV-36 (continued)

Spandrel

Area: $0.14142 = 0.1673 k^2$

Example, $r = 3$

Area: $0.1414 \times 3^2 = 1.9314$, Ans.

Parabola

$L = \text{length of curved line} = \text{periphery} = ^{2}

L = \frac{8}{3} \sqrt{(c + e)} + 0.0699 \times \log(\sqrt{c} + \sqrt{c + e})

in which $c = \left(\frac{41}{3}\right)^3$

Area: $\frac{8}{3} h$

Example, $e = 3$, $h = 4$

Area: $\frac{8}{3} \times 3 \times 4 = 8$, Ans.

Ellipse

Area: $\pi ab = 3.1416 ab$

Circum. = $\pi (a + b) \frac{b - a}{b + a}$

(An approximation)

Example, $a = 3$, $b = 4$

Area: $3.1416 \times 3 \times 4 = 37.6992$, Ans.

Circum. = $3.1416(4 + 3)\frac{1 - \frac{3}{2}}{b + a}$

Area: $3.1416 \times 7 \times 3.1416 = 82.13$, Ans.

Table XV-37 (continued)

Rectangular Prism

$V = abh$

$T = 2(ab + ah + bh)$

$S = 2(ab + ah + bh)$

$d = \sqrt{a^2 + b^2 + h^2}$

Prism or Cylinder, Right or Oblique, Parallel Ends

$V = Ah$

$S = Pl$

$T = Pl + 2B$

(Note $A = B$, $P = P_a$ and $l = h$ for right cylinders and prisms)

Cylinder, Right or Oblique, Circular or Otherwise, Parallel Ends

$V = Bh$ (Right Cylinder)

$S = Ph$ (Right Cylinder)

$P = D$ (Oblique Cylinder)

$T = Ph + 2D$ (Oblique Cylinder)

$T = Ph + 2B$ (Oblique Cylinder)

Frustrum of Prism or Cylinder

$V = \frac{1}{3}h_1 (h_1 + h_2)$

Pyramid or Cone, Right and Regular

$V = \frac{1}{3} Bh$

$S = \frac{1}{2} S$

$T = \frac{1}{2} (b + B)$

Pyramid or Cone, Right or Oblique, Regular or Irregular

$V = \frac{1}{3} Bh$
Table XV-37 (continued)

Frustum of Pyramid or Cone, Right and Regular, Parallel Ends

\[V = \frac{h}{3}(B_1 + B_2 + \sqrt{B_1 B_2}) \]
\[S = \frac{1}{2}(P_1 + P_2) \]
\[T = \frac{1}{2}(P_1 + P_2) + B_1 + B_2 \]
where: \(B_1 = \text{Area of Top} \)
\(P_T = \text{Perimeter of Top} \)

Frustum of Any Pyramid or Cone, Parallel Ends

\[V = \frac{1}{3}h(B_1 + B_2 + \sqrt{B_1 B_2}) \]
where: \(B_1 = \text{Area of Top} \)

Wedge, Regular

\[V = \frac{h}{6}(a + b)(a + b + c) \]

Sphere

\[V = \frac{4}{3}\pi r^3 \]
\[S = 4\pi r^2 \]

Spherical Sector

\[S = \frac{1}{2}\pi r(2b + c) \]
\[V = \frac{1}{3}\pi r^2 b \]

Spherical Segment

\[S = 2\pi bh = \frac{2}{3}\pi(4a^3 + c^3) \]
\[V = \frac{1}{3}\pi bh(2r - b) \]
\[= \frac{1}{24}\pi h(3c^2 + 4d^2) \]

Table XV-37 (continued)

Spherical Zone

\[S = 2\pi rb \]
\[V = \frac{1}{3}\pi r^2(8a^2 + 5b^2 + 4a^3) \]

Circular Ring

\[S = 2\pi^2 Rr \]
\[V = \frac{4}{3}\pi^2 Rr^3 \]

Ellipsoid

\[V = \frac{1}{4}\pi^2abh \]

Paraboloid

\[V = \frac{1}{8}\pi^2 ah^3 \]
TABLE XV-38

TRIGONOMETRIC RELATIONS AND SOLUTIONS OF RIGHT ANGLE TRIANGLES

As shown in the illustration, the sides of the right angled triangle are designated a, b, and c. The angles opposite each of these sides are designated A, B, and C respectively.

Angle A, opposite the hypotenuse c is the right angle and is therefore always one of the known quantities.

<table>
<thead>
<tr>
<th>Sides and Angles Known</th>
<th>Formulas for Sides and Angles to be Found</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sides a and b</td>
<td>$c = \sqrt{a^2 - b^2}$, (\sin B = \frac{b}{c}), $C = 90^\circ - B$</td>
</tr>
<tr>
<td>Sides a and c</td>
<td>$b = \sqrt{c^2 - a^2}$, (\sin B = \frac{c}{a}), $C = 90^\circ - B$</td>
</tr>
<tr>
<td>Sides b and c</td>
<td>$a = \sqrt{b^2 + c^2}$, (\tan C = \frac{b}{c}), $C = 90^\circ - B$</td>
</tr>
<tr>
<td>Side a, angle B</td>
<td>$b = a \times \sin B$, (c = a \times \cos B), $C = 90^\circ - B$</td>
</tr>
<tr>
<td>Side a, angle C</td>
<td>$b = a \times \cos C$, (c = a \times \sin C), $B = 90^\circ - C$</td>
</tr>
<tr>
<td>Side b, angle B</td>
<td>$a = \frac{b}{\sin B}$, (c = b \times \cos B), $C = 90^\circ - B$</td>
</tr>
<tr>
<td>Side b, angle C</td>
<td>$a = \frac{b}{\cos C}$, (c = b \times \sin C), $B = 90^\circ - C$</td>
</tr>
<tr>
<td>Side c, angle B</td>
<td>$a = \frac{c}{\cos B}$, (b = c \times \cos B), $C = 90^\circ - B$</td>
</tr>
<tr>
<td>Side c, angle C</td>
<td>$a = \frac{c}{\sin C}$, (b = c \times \sin C), $B = 90^\circ - C$</td>
</tr>
</tbody>
</table>

TABLE XV-39

TRIGONOMETRIC FUNCTIONS

<table>
<thead>
<tr>
<th>Angle</th>
<th>Sin</th>
<th>Cos</th>
<th>Tan</th>
<th>Angle</th>
<th>Sin</th>
<th>Cos</th>
<th>Tan</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.000</td>
<td>1.000</td>
<td>0.000</td>
<td>0.000</td>
<td>46.00</td>
<td>0.719</td>
<td>0.695</td>
<td>1.04</td>
</tr>
<tr>
<td>1.017</td>
<td>0.999</td>
<td>0.017</td>
<td>0.731</td>
<td>47.00</td>
<td>0.682</td>
<td>1.07</td>
<td></td>
</tr>
<tr>
<td>2.034</td>
<td>0.999</td>
<td>0.034</td>
<td>0.743</td>
<td>48.00</td>
<td>0.669</td>
<td>1.11</td>
<td></td>
</tr>
<tr>
<td>3.051</td>
<td>0.999</td>
<td>0.051</td>
<td>0.755</td>
<td>49.00</td>
<td>0.656</td>
<td>1.15</td>
<td></td>
</tr>
<tr>
<td>4.068</td>
<td>0.999</td>
<td>0.068</td>
<td>0.766</td>
<td>50.00</td>
<td>0.643</td>
<td>1.19</td>
<td></td>
</tr>
<tr>
<td>5.085</td>
<td>0.999</td>
<td>0.085</td>
<td>0.777</td>
<td>51.00</td>
<td>0.630</td>
<td>1.23</td>
<td></td>
</tr>
<tr>
<td>6.102</td>
<td>0.999</td>
<td>0.010</td>
<td>0.788</td>
<td>52.00</td>
<td>0.616</td>
<td>1.28</td>
<td></td>
</tr>
<tr>
<td>7.119</td>
<td>0.999</td>
<td>0.119</td>
<td>0.799</td>
<td>53.00</td>
<td>0.602</td>
<td>1.33</td>
<td></td>
</tr>
<tr>
<td>8.136</td>
<td>0.999</td>
<td>0.236</td>
<td>0.809</td>
<td>54.00</td>
<td>0.588</td>
<td>1.38</td>
<td></td>
</tr>
<tr>
<td>9.153</td>
<td>0.999</td>
<td>0.353</td>
<td>0.819</td>
<td>55.00</td>
<td>0.574</td>
<td>1.43</td>
<td></td>
</tr>
<tr>
<td>10.170</td>
<td>0.999</td>
<td>0.470</td>
<td>0.829</td>
<td>56.00</td>
<td>0.559</td>
<td>1.48</td>
<td></td>
</tr>
<tr>
<td>11.187</td>
<td>0.999</td>
<td>0.587</td>
<td>0.839</td>
<td>57.00</td>
<td>0.543</td>
<td>1.54</td>
<td></td>
</tr>
<tr>
<td>12.204</td>
<td>0.999</td>
<td>0.704</td>
<td>0.848</td>
<td>58.00</td>
<td>0.526</td>
<td>1.60</td>
<td></td>
</tr>
<tr>
<td>13.221</td>
<td>0.999</td>
<td>0.821</td>
<td>0.857</td>
<td>59.00</td>
<td>0.510</td>
<td>1.66</td>
<td></td>
</tr>
<tr>
<td>14.238</td>
<td>0.999</td>
<td>0.938</td>
<td>0.866</td>
<td>60.00</td>
<td>0.493</td>
<td>1.72</td>
<td></td>
</tr>
<tr>
<td>15.255</td>
<td>0.999</td>
<td>1.055</td>
<td>0.875</td>
<td>61.00</td>
<td>0.476</td>
<td>1.78</td>
<td></td>
</tr>
<tr>
<td>16.272</td>
<td>0.999</td>
<td>1.172</td>
<td>0.884</td>
<td>62.00</td>
<td>0.459</td>
<td>1.84</td>
<td></td>
</tr>
<tr>
<td>17.289</td>
<td>0.999</td>
<td>1.289</td>
<td>0.893</td>
<td>63.00</td>
<td>0.442</td>
<td>1.90</td>
<td></td>
</tr>
<tr>
<td>18.306</td>
<td>0.999</td>
<td>1.406</td>
<td>0.902</td>
<td>64.00</td>
<td>0.425</td>
<td>1.96</td>
<td></td>
</tr>
<tr>
<td>19.323</td>
<td>0.999</td>
<td>1.523</td>
<td>0.911</td>
<td>65.00</td>
<td>0.408</td>
<td>2.02</td>
<td></td>
</tr>
<tr>
<td>20.340</td>
<td>0.999</td>
<td>1.640</td>
<td>0.920</td>
<td>66.00</td>
<td>0.391</td>
<td>2.08</td>
<td></td>
</tr>
<tr>
<td>21.357</td>
<td>0.999</td>
<td>1.757</td>
<td>0.929</td>
<td>67.00</td>
<td>0.374</td>
<td>2.14</td>
<td></td>
</tr>
<tr>
<td>22.374</td>
<td>0.999</td>
<td>1.874</td>
<td>0.938</td>
<td>68.00</td>
<td>0.357</td>
<td>2.20</td>
<td></td>
</tr>
<tr>
<td>23.391</td>
<td>0.999</td>
<td>1.991</td>
<td>0.947</td>
<td>69.00</td>
<td>0.340</td>
<td>2.26</td>
<td></td>
</tr>
<tr>
<td>24.408</td>
<td>0.999</td>
<td>2.108</td>
<td>0.957</td>
<td>70.00</td>
<td>0.323</td>
<td>2.32</td>
<td></td>
</tr>
<tr>
<td>25.425</td>
<td>0.999</td>
<td>2.225</td>
<td>0.966</td>
<td>71.00</td>
<td>0.306</td>
<td>2.38</td>
<td></td>
</tr>
<tr>
<td>26.442</td>
<td>0.999</td>
<td>2.342</td>
<td>0.975</td>
<td>72.00</td>
<td>0.289</td>
<td>2.44</td>
<td></td>
</tr>
<tr>
<td>27.459</td>
<td>0.999</td>
<td>2.459</td>
<td>0.984</td>
<td>73.00</td>
<td>0.272</td>
<td>2.50</td>
<td></td>
</tr>
<tr>
<td>28.476</td>
<td>0.999</td>
<td>2.576</td>
<td>0.993</td>
<td>74.00</td>
<td>0.255</td>
<td>2.56</td>
<td></td>
</tr>
<tr>
<td>29.493</td>
<td>0.999</td>
<td>2.693</td>
<td>1.002</td>
<td>75.00</td>
<td>0.238</td>
<td>2.62</td>
<td></td>
</tr>
<tr>
<td>30.510</td>
<td>0.999</td>
<td>2.810</td>
<td>1.011</td>
<td>76.00</td>
<td>0.221</td>
<td>2.68</td>
<td></td>
</tr>
<tr>
<td>31.527</td>
<td>0.999</td>
<td>2.927</td>
<td>1.020</td>
<td>77.00</td>
<td>0.204</td>
<td>2.74</td>
<td></td>
</tr>
<tr>
<td>32.544</td>
<td>0.999</td>
<td>3.044</td>
<td>1.029</td>
<td>78.00</td>
<td>0.187</td>
<td>2.80</td>
<td></td>
</tr>
<tr>
<td>33.561</td>
<td>0.999</td>
<td>3.161</td>
<td>1.038</td>
<td>79.00</td>
<td>0.170</td>
<td>2.86</td>
<td></td>
</tr>
<tr>
<td>34.578</td>
<td>0.999</td>
<td>3.278</td>
<td>1.047</td>
<td>80.00</td>
<td>0.153</td>
<td>2.92</td>
<td></td>
</tr>
<tr>
<td>35.595</td>
<td>0.999</td>
<td>3.395</td>
<td>1.056</td>
<td>81.00</td>
<td>0.136</td>
<td>2.98</td>
<td></td>
</tr>
<tr>
<td>36.612</td>
<td>0.999</td>
<td>3.512</td>
<td>1.065</td>
<td>82.00</td>
<td>0.119</td>
<td>3.04</td>
<td></td>
</tr>
<tr>
<td>37.629</td>
<td>0.999</td>
<td>3.629</td>
<td>1.074</td>
<td>83.00</td>
<td>0.102</td>
<td>3.10</td>
<td></td>
</tr>
<tr>
<td>38.646</td>
<td>0.999</td>
<td>3.746</td>
<td>1.083</td>
<td>84.00</td>
<td>0.085</td>
<td>3.16</td>
<td></td>
</tr>
<tr>
<td>39.663</td>
<td>0.999</td>
<td>3.863</td>
<td>1.092</td>
<td>85.00</td>
<td>0.068</td>
<td>3.22</td>
<td></td>
</tr>
<tr>
<td>40.680</td>
<td>0.999</td>
<td>3.980</td>
<td>1.101</td>
<td>86.00</td>
<td>0.051</td>
<td>3.28</td>
<td></td>
</tr>
<tr>
<td>41.697</td>
<td>0.999</td>
<td>4.097</td>
<td>1.110</td>
<td>87.00</td>
<td>0.034</td>
<td>3.34</td>
<td></td>
</tr>
<tr>
<td>42.714</td>
<td>0.999</td>
<td>4.214</td>
<td>1.119</td>
<td>88.00</td>
<td>0.017</td>
<td>3.40</td>
<td></td>
</tr>
<tr>
<td>43.731</td>
<td>0.999</td>
<td>4.331</td>
<td>1.128</td>
<td>89.00</td>
<td>0.000</td>
<td>3.46</td>
<td></td>
</tr>
<tr>
<td>44.748</td>
<td>0.999</td>
<td>4.448</td>
<td>1.137</td>
<td>90.00</td>
<td>0.000</td>
<td>Infinity</td>
<td></td>
</tr>
</tbody>
</table>
TABLE XV-40

Asphalt Block Recommended Thicknesses for Typical Applications

<table>
<thead>
<tr>
<th>Typical Applications</th>
<th>Thickness of Unit Recommended</th>
</tr>
</thead>
<tbody>
<tr>
<td>Industrial Floors</td>
<td>1 1/2", 2" or 2 1/2"</td>
</tr>
<tr>
<td>Warehouse, Baggage and Express Room Floors</td>
<td>1 1/2" or 2"</td>
</tr>
<tr>
<td>Traffic Aisles and Loading Platforms</td>
<td>1 1/2" or 2"</td>
</tr>
<tr>
<td>Piers and Decks</td>
<td>1 1/2" or 2"</td>
</tr>
<tr>
<td>Roof Decks—Parking or Storage</td>
<td>1 1/2"</td>
</tr>
<tr>
<td>Roof Decks and Balconies—Recreational</td>
<td>1 1/2" or 1 1/2"</td>
</tr>
<tr>
<td>Airport, Hangars, Runways, Aprons</td>
<td>1 1/2", 2" or 2 1/2"</td>
</tr>
<tr>
<td>Ramps and Bridge Approaches</td>
<td>2 1/2" or 3"</td>
</tr>
<tr>
<td>Streets, Roads, Bridges, Viaducts</td>
<td>2 1/2" or 3"</td>
</tr>
<tr>
<td>Waterproofing Protection Courses</td>
<td>1 1/4"</td>
</tr>
<tr>
<td>Estate, Residential and Institutional Drive-ways</td>
<td>2" Hexagonal or Rectangular</td>
</tr>
<tr>
<td>Walks, Courts, Plazas and Terraces</td>
<td>2" Hexagonal or Rectangular</td>
</tr>
</tbody>
</table>

TABLE XV-41

Asphalt Block Weight and Quantity Relationships

<table>
<thead>
<tr>
<th>Size</th>
<th>Pounds per Block per Sq Ft</th>
<th>Pounds per Block per Sq Yd</th>
<th>Pounds per Thousand Blocks per Sq Yd</th>
<th>Net Tons per Thousand Blocks per Sq Yd</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 1/2" x 2 1/2"</td>
<td>10.5</td>
<td>25.2</td>
<td>227.3</td>
<td>5.50</td>
</tr>
<tr>
<td>1 1/2" x 2 1/2"</td>
<td>12.9</td>
<td>28.6</td>
<td>281.4</td>
<td>6.43</td>
</tr>
<tr>
<td>1 1/2" x 2 1/2"</td>
<td>14.3</td>
<td>31.0</td>
<td>313.4</td>
<td>6.93</td>
</tr>
<tr>
<td>1 1/2" x 2 1/2"</td>
<td>16.8</td>
<td>33.6</td>
<td>339.1</td>
<td>7.43</td>
</tr>
<tr>
<td>1 1/2" x 2 1/2"</td>
<td>19.4</td>
<td>36.2</td>
<td>361.0</td>
<td>7.89</td>
</tr>
<tr>
<td>1 1/2" x 2 1/2"</td>
<td>22.0</td>
<td>38.8</td>
<td>382.4</td>
<td>8.34</td>
</tr>
<tr>
<td>1 1/2" x 2 1/2"</td>
<td>24.6</td>
<td>41.4</td>
<td>403.0</td>
<td>8.79</td>
</tr>
<tr>
<td>1 1/2" x 2 1/2"</td>
<td>27.2</td>
<td>43.9</td>
<td>423.6</td>
<td>9.25</td>
</tr>
<tr>
<td>1 1/2" x 2 1/2"</td>
<td>29.8</td>
<td>46.5</td>
<td>444.1</td>
<td>9.70</td>
</tr>
<tr>
<td>1 1/2" x 2 1/2"</td>
<td>32.4</td>
<td>49.1</td>
<td>464.6</td>
<td>10.15</td>
</tr>
<tr>
<td>1 1/2" x 2 1/2"</td>
<td>35.0</td>
<td>51.7</td>
<td>485.1</td>
<td>10.60</td>
</tr>
<tr>
<td>1 1/2" x 2 1/2"</td>
<td>37.6</td>
<td>54.3</td>
<td>505.6</td>
<td>11.05</td>
</tr>
<tr>
<td>1 1/2" x 2 1/2"</td>
<td>40.2</td>
<td>56.9</td>
<td>526.1</td>
<td>11.50</td>
</tr>
<tr>
<td>1 1/2" x 2 1/2"</td>
<td>42.8</td>
<td>59.5</td>
<td>546.6</td>
<td>12.05</td>
</tr>
<tr>
<td>1 1/2" x 2 1/2"</td>
<td>45.4</td>
<td>62.1</td>
<td>567.1</td>
<td>12.50</td>
</tr>
<tr>
<td>1 1/2" x 2 1/2"</td>
<td>48.0</td>
<td>64.7</td>
<td>587.6</td>
<td>13.05</td>
</tr>
<tr>
<td>1 1/2" x 2 1/2"</td>
<td>50.6</td>
<td>67.3</td>
<td>608.1</td>
<td>13.50</td>
</tr>
<tr>
<td>1 1/2" x 2 1/2"</td>
<td>53.2</td>
<td>69.9</td>
<td>628.6</td>
<td>14.05</td>
</tr>
<tr>
<td>1 1/2" x 2 1/2"</td>
<td>55.8</td>
<td>72.5</td>
<td>649.1</td>
<td>14.50</td>
</tr>
<tr>
<td>1 1/2" x 2 1/2"</td>
<td>58.4</td>
<td>75.0</td>
<td>669.6</td>
<td>15.05</td>
</tr>
</tbody>
</table>

Hexagonal Tiles

Square Tiles
TABLE XV-42

Requirements for U.S. Standard Testing Sieves and Approximate Equivalents of Square and Round Openings

U.S. Standard Sieves

Standard Requirements for Certain Sizes

<table>
<thead>
<tr>
<th>Size of Sieve Designation</th>
<th>Sieve Opening</th>
<th>Permissible Variations in Average Opening, Percent</th>
<th>Permissible Variations in Maximum Opening, Percent</th>
<th>Wire Diameter</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>mm. (Approximate Equivalents)</td>
<td>mm. (Approximate Equivalents)</td>
<td></td>
</tr>
<tr>
<td>3 in.</td>
<td>76.2</td>
<td>±2</td>
<td>±3</td>
<td>4.8 to 8.1</td>
</tr>
<tr>
<td>2½ in.</td>
<td>63.5</td>
<td>±2</td>
<td>±3</td>
<td>4.4 to 7.1</td>
</tr>
<tr>
<td>2 in.</td>
<td>50.8</td>
<td>±2</td>
<td>±3</td>
<td>4.1 to 6.2</td>
</tr>
<tr>
<td>1½ in.</td>
<td>38.1</td>
<td>±2</td>
<td>±3</td>
<td>3.7 to 5.3</td>
</tr>
<tr>
<td>1¼ in.</td>
<td>31.7</td>
<td>±2</td>
<td>±3</td>
<td>3.5 to 4.8</td>
</tr>
<tr>
<td>1 in.</td>
<td>25.4</td>
<td>±3</td>
<td>±5</td>
<td>3.1 to 4.5</td>
</tr>
<tr>
<td>¾ in.</td>
<td>19.1</td>
<td>±3</td>
<td>±5</td>
<td>2.9 to 3.9</td>
</tr>
<tr>
<td>½ in.</td>
<td>15.2</td>
<td>±3</td>
<td>±5</td>
<td>2.7 to 3.7</td>
</tr>
<tr>
<td>⅜ in.</td>
<td>12.7</td>
<td>±3</td>
<td>±5</td>
<td>2.5 to 3.5</td>
</tr>
<tr>
<td>No. 4</td>
<td>9.52</td>
<td>±3</td>
<td>±5</td>
<td>2.3 to 3.3</td>
</tr>
<tr>
<td>No. 8</td>
<td>6.35</td>
<td>±3</td>
<td>±5</td>
<td>2.1 to 2.9</td>
</tr>
<tr>
<td>No. 12</td>
<td>4.76</td>
<td>±3</td>
<td>±5</td>
<td>1.9 to 2.1</td>
</tr>
<tr>
<td>No. 20</td>
<td>3.50</td>
<td>±3</td>
<td>±5</td>
<td>1.7 to 1.9</td>
</tr>
<tr>
<td>No. 30</td>
<td>2.00</td>
<td>±5</td>
<td>±7</td>
<td>1.5 to 1.7</td>
</tr>
</tbody>
</table>

Approximate Equivalents of Square and Round Openings

<table>
<thead>
<tr>
<th>Hole Size (Inches)</th>
<th>Square</th>
<th>Round</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>⅜</td>
<td>3⅝</td>
</tr>
<tr>
<td>2½</td>
<td>⅛</td>
<td>3⅝</td>
</tr>
<tr>
<td>2</td>
<td>⅜</td>
<td>3⅝</td>
</tr>
<tr>
<td>1½</td>
<td>⅞</td>
<td>3⅝</td>
</tr>
<tr>
<td>1⅝</td>
<td>⅞</td>
<td>3⅝</td>
</tr>
<tr>
<td>1⅝</td>
<td>⅞</td>
<td>3⅝</td>
</tr>
</tbody>
</table>

Example Calculations

- No. 40: 0.42 in.
- No. 50: 0.297 in.
- No. 80: 0.177 in.
- No. 100: 0.149 in.
- No. 200: 0.074 in.
TABLE XV-43
APPROXIMATE PROCEDURE FOR TRANSFORMING "PASSING-RETAINED" SPECIFICATION TO AN EQUIVALENT "TOTAL PERCENT PASSING" SPECIFICATION

<table>
<thead>
<tr>
<th>Assumed "Passing- Retained" Specification</th>
<th>Step 1</th>
<th>Step 2</th>
<th>Step 3</th>
<th>Step 4</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Cumulative Percent Passing, Fine to Coarse Sizes</td>
<td>Cumulative Percent Retained, Course to Fine Sizes</td>
<td>Cumulative Percent Passing, Course to Fine Sizes</td>
<td>Equivalent Specification on "Total Percent Passing" Basis</td>
</tr>
<tr>
<td>Col. No. 1</td>
<td>Col. No. 2</td>
<td>Col. No. 3</td>
<td>Col. No. 4</td>
<td>Col. No. 5</td>
</tr>
<tr>
<td>1½ in.</td>
<td>1 in.</td>
<td>0 — 18</td>
<td>1½ in.</td>
<td>63</td>
</tr>
<tr>
<td>1 in.</td>
<td>¾ in.</td>
<td>11</td>
<td>1 in.</td>
<td>59</td>
</tr>
<tr>
<td>¾ in.</td>
<td>½ in.</td>
<td>12</td>
<td>½ in.</td>
<td>54</td>
</tr>
<tr>
<td>½ in.</td>
<td>¾ in.</td>
<td>9</td>
<td>¾ in.</td>
<td>51</td>
</tr>
<tr>
<td>#4</td>
<td>8</td>
<td>10 — 14</td>
<td>#8</td>
<td>32</td>
</tr>
<tr>
<td>#8</td>
<td>16</td>
<td>8 — 12</td>
<td>#16</td>
<td>24</td>
</tr>
<tr>
<td>#16</td>
<td>7 — 11</td>
<td>#30</td>
<td>17</td>
<td>34</td>
</tr>
<tr>
<td>#30</td>
<td>6 — 10</td>
<td>#50</td>
<td>11</td>
<td>24</td>
</tr>
<tr>
<td>#50</td>
<td>5 — 9</td>
<td>#100</td>
<td>6</td>
<td>15</td>
</tr>
<tr>
<td>#100</td>
<td>4 — 8</td>
<td>#200</td>
<td>2</td>
<td>7</td>
</tr>
</tbody>
</table>

Notes:
- COLUMN 5 is the same as Column 2 repeated for convenience and clarity
- COLUMN 6 is derived by adding the values in Column 3 from Fine to Coarse
- COLUMN 7 is derived by adding the values in Column 4 from Fine to Coarse
- COLUMN 8 is derived by adding the values in Column 3 from Coarse to Fine
- COLUMN 9 is derived by adding the values in Column 4 from Coarse to Fine
- COLUMN 10 is derived by subtracting the values in Column 8 from 100 (i.e. Column 10 = 100 — Column 8)
- COLUMN 11 is derived by subtracting the values in Column 9 from 100 (i.e. Column 11 = 100 — Column 9)
- The values for COLUMN 12 are obtained by selecting whichever value is the larger from either Column 6 or Column 11
- The values for COLUMN 13 are obtained by selecting whichever value is the smaller from either Column 7 or Column 10
- Notes: Where more or fewer screens sizes are used, Columns 3, 4 and 5 would be changed accordingly.
- Column values are used as specification limits in Columns 3 and 4 and in Columns 12 and 13. The figures used in this table were selected to indicate more clearly the method.
- It will be noted that a very narrow specification by the "Passing and Retained" method gives a much wider specification by the "Total Percent Passing" method. This ability of the "Total Percent Passing" method to provide a narrow control on the gradation, with reasonable margins on the screen sizes, is an important advantage of this method.
APPENDIX A

Evaluation of Materials

A.01 EXPLORATIONS AND BORINGS.—The materials investigation should include a sufficient number of borings to permit identification of the various soil types likely to be encountered both in the area of the proposed pavement and in the adjacent areas where material may be borrowed. A preliminary investigation which takes full advantage of any existing open ditches or cuts and the use of aerial photography will indicate the general areas of each soil type and make possible the strategic location of the boring sites so that the maximum information may be obtained from the least number of borings. The borings should be carried at least to the full depth of frost penetration or, where a cut is contemplated, to a depth of 6 feet below the grade line of the proposed subgrade. Borings in borrow areas should be carried well below the anticipated depth of borrow. The data obtained from these borings should be sufficient to develop soil profiles and to identify the principal soils in the area. Detailed tests should then be made of material obtained from large-size test pits or borings in areas representative of each soil type. The types of tests required are dependent upon the method of evaluation selected, as discussed in Chapter V and listed below.

A.02 EVALUATION METHODS.—Methods for evaluating materials as included in this manual and references to appropriate test procedures are as follows:

b. Unified Soil Classification—See Appendix B of Technical Memorandum 3-357, “The Unified Soil Classification System, Characteristics of Soil Groups Pertaining to Roads and Airfields,” published by the Waterways Experiment Station, Corps of Engineers, Department of the Army, Vicksburg, Mississippi.

APPENDIX B

Typical Examples

B.01 GENERAL.—A more thorough understanding of the design principles outlined in this chapter will be gained by a study of typical examples employing the procedures outlined in Part 3.

B.02 EXAMPLE 1.—Assume the following conditions:

Traffic Classification Light
Maximum Single Axle Load 10,000 lbs
Unified Soil Classification of Subgrade ... MH
Unified Soil Classification of Material Available for Base GM-d

By reference to Figure V-3 it will be noted that soil types in the Unified Soil Classification system, as well as in the AASHO Classifications system, cover a range of bearing values and, therefore, indicate a range of thickness requirements. In such cases, it is usually necessary for the designer to examine the basic laboratory data, used in arriving at the specific classification, to determine the point within the range to be used in the design. Consideration should also be given to the expected climatic conditions in arriving at this design point. The general tendency should be toward the use of the lower side of the range in wet climates with freezing conditions and toward the higher side of the range for arid, non-freezing regions. In this particular example, it is assumed that the designer has decided to use the low side of the range for the MH type of subgrade, Unified Soil Classification system.

Referring to Figure V-3 and using procedures described in Part 3, it can be determined that the total required thickness of the asphalt pavement structure for the assumed traffic and load conditions is 6 inches. Table V-2 indicates that several types of asphalt pavement surface may normally be used for this type of traffic. For this particular example, however, it is assumed that the designer has decided to use a double surface treatment. Table V-3 indicates a 1-in. nominal thickness for a double surface treatment and suggests the use of Asphalt Institute Specification S-2, S-3, S-5 or a combination thereof. Since the required total thickness of pavement is 6 inches, then the required thickness of base is 5 inches.

Referring next to “a. Light Traffic” under Thickness and Quality Requirements for Non-Asphaltic Bases in this publication, it is noted that where surface treatments are used for “Light Traffic,” the base shall be of material classified as “Medium Base,” or better, according to the “General Soil Rating as Subgrade, Subbase or Base” (Figure V-3). It will be noted that the available base material assumed for this typical example meets this requirement.

The referenced portion of Chapter V, as noted above also requires a 5-in. minimum thickness of base and pavement. The 6-in. design thickness determined previously is thus in excess of the required minimum total thickness of base and pavement and, in fact, it would be theoretically possible to use a 1-inch sub-base in this design. The use of such a thin course, however, is impractical from the standpoint of practical construction and normally would be more costly than 1 inch of additional base material.

One design section for the conditions assumed in this typical example would be as follows:

<table>
<thead>
<tr>
<th>Layer</th>
<th>Thickness</th>
</tr>
</thead>
<tbody>
<tr>
<td>1" Double Surface Treatment</td>
<td></td>
</tr>
<tr>
<td>5" Base—Unified Soil Classification of GM-d</td>
<td></td>
</tr>
<tr>
<td>Total 6" Subgrade—Unified Soil Classification of MH</td>
<td></td>
</tr>
</tbody>
</table>

B.03 EXAMPLE 2.—Assume the following conditions:

Traffic Classification Very Heavy
Maximum Single Axle Load 36,000 lbs
Resistance (K) Value of Subgrade 30
Resistance (R) Value of Improved Subgrade 46
Resistance (R) Value of Subbase 71
Resistance (R) Value of Base 82

By use of Figure V-3 it may be determined that the total thickness of the asphalt pavement structure required over a subgrade with an R value of 30, for an axle load of 36,000 lbs and for traffic classified as “Very Heavy” is 31 inches. Table V-3 recommends that asphalt concrete only be used as the pavement surface for “Very Heavy” traffic and Table V-3 suggests a 4-in. thickness of pavement surface for this type of traffic. Thus, a 4-in. thickness of asphalt concrete is tentatively selected for the pavement surface.

Figure V-3 indicates that the minimum thickness of base and pavement required over a subbase material with an R Value of 71 is 8 inches. Article 5:35, however, requires a minimum base and pavement thickness of 10 inches for “Very Heavy” traffic conditions. Therefore, 6 inches of base (R Value of 82) may be used in combination with the 4-in. asphalt-concrete surface selected as noted in the preceding paragraph.

Figure V-3 further indicates a minimum required thickness of 22 inches over the improved subgrade material with an R Value of 46. The upper 10 inches of the required 22-in. thickness must be base and pavement and the remaining 12 inches may be subbase.

It is noted above that the total required thickness of the asphalt pavement structure is 31 inches and that pavement, base and subbase total 22 inches. The remaining 9 inches may be made up of the improved subgrade material having an R Value of 46.
Thus, one design section for the conditions assumed in this example may be:

<table>
<thead>
<tr>
<th>Thickness</th>
<th>Description</th>
<th>R Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>4”</td>
<td>Asphalt Concrete Pavement (Surface and Binder)</td>
<td></td>
</tr>
<tr>
<td>6”</td>
<td>Base – R Value = 82</td>
<td></td>
</tr>
<tr>
<td>12”</td>
<td>Subbase – R Value = 71</td>
<td></td>
</tr>
<tr>
<td>9”</td>
<td>Improved Subgrade – R Value = 46</td>
<td></td>
</tr>
<tr>
<td>Total 31”</td>
<td>Subgrade – R Value = 32</td>
<td></td>
</tr>
</tbody>
</table>

B.04 EXAMPLE 3.—Assume the same conditions as for the preceding Example 2 except that an asphalt base as described in Article 5.34, is to be considered. Article 5.36 observes that 1 in. of high-quality asphalt base may be substituted for 1½ in. of non-asphalt base. Thus, 4 in. of the asphalt base may be substituted for the 6-in. base noted in Example 2. This 2-in. reduction in base thickness may also be made in the required 31-in. total thickness of asphalt pavement structure, providing a design section as follows:

<table>
<thead>
<tr>
<th>Thickness</th>
<th>Description</th>
<th>R Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>4”</td>
<td>Asphalt Concrete Pavement (Surface and Binder)</td>
<td></td>
</tr>
<tr>
<td>4”</td>
<td>Asphalt Base</td>
<td></td>
</tr>
<tr>
<td>12”</td>
<td>Subbase – R Value = 71</td>
<td></td>
</tr>
<tr>
<td>9”</td>
<td>Improved Subgrade – R Value = 46</td>
<td></td>
</tr>
<tr>
<td>Total 29”</td>
<td>Subgrade – R Value = 32</td>
<td></td>
</tr>
</tbody>
</table>

B.05 EXAMPLE 4.—A further modification of the design in Examples 2 and 3 may be made by the substitution of asphalt base for asphalt concrete binder course on an inch-for-inch basis.

For example, one might choose to use a 2½-inch asphalt concrete pavement, consisting of a 1½-inch binder course and a 1-inch surface course, and a 5½-inch asphalt base. The section design would then be:

<table>
<thead>
<tr>
<th>Thickness</th>
<th>Description</th>
<th>R Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>2½”</td>
<td>Asphalt Concrete Pavement (Surface and Binder)</td>
<td></td>
</tr>
<tr>
<td>5½”</td>
<td>Asphalt Base</td>
<td></td>
</tr>
<tr>
<td>12”</td>
<td>Subbase – R Value = 71</td>
<td></td>
</tr>
<tr>
<td>9”</td>
<td>Improved Subgrade – R Value = 46</td>
<td></td>
</tr>
<tr>
<td>Total 29”</td>
<td>Subgrade – R Value = 32</td>
<td></td>
</tr>
</tbody>
</table>
INDEX

AASHO classification, 78; 396
Abrasion (wear) 31; 33 (Fig. III-11)
Aggregate and asphalt, quantities for single
surface treatments and seal coats, 211; 212 (Table
VII-10)
Aggregates
base, subbase, selection for pavement structures, 79
bin sampling, 166
bin withdrawal sequence, 173
carry-over, 164
coarse, 12
combined mineral, sand equivalent of, 89;
93
correction for specific gravity of, 193
crushed, 202
dense graded, 13
dryer, 161; 162 (Fig. VII-7)
dry mineral, weight per cubic foot and per
cubic yard for aggregates of different specific gravity
and various void contents, 361 (Table
XV-19)
finite, 13, 61
general, 29
graded, 12
local, use in stream and
lake erosion control, 295
macadam, 12
mixed-in-place suitability, 202
open graded, 13
proportioning, continuous mix plant, 177
requirements in penetration macadam
using asphalt cement or heavy cut-
backs, 197 (Table
VII-10)
sampling device, 167
(Fig. VII-10); 167
(VII-9)
size, maximum in sub-
base course, 97
in skid resistant surface treatments, 221
specifications, 59-64
coarse, 59
fine, 61
mineral filler, 61
transforming “passing retained” to equivalent “total percent passing”, 394
(Table XV-43)
spreader, 117
spreading, in surface treatments, 214
temperature measurement, 163
tests
abrasion (wear), 31;
33 (Fig. III-11)
in continuous mix
plant, 181
dry sieve analysis, 30
moisture, 36
sand equivalent, 31
soundness, 33
specific gravity, 34
unit weight, 35
wash sieve analysis, 31
See also Cold Feed, Feeder
Airfield pavements, design, 105
Airports
San Francisco International, illus., 106
Washington National, illus., 106
Application temperatures control of, 69
guide for determining, 70
suggested specifications, 72
temperature-viscosity relationship, 71
viscosity vs. temperature for asphalts, plotting chart, 71 (Fig. IV-2)
See also Temperatures
Areas of plane figures; 382 (Table XV-36)
Asphalt
and aggregate quantities in single surface treatments and seal coats, 211; 212 (Table VII-12)
amount for in-place mixes, 204
blocks, 9
recommended thicknesses for typical applications, 389 (Table XV-40)
weight and quantity relationships, 391 (Table XV-41)
built-up roofing, 305
cement
grade, in stream and lake erosion control, 295
penetration macadam using, 195
principal uses, 6 (Table 1.2)
tests of
ductility, 20
flash point, 18
penetration, 15
solubility, 20
specific gravity, 21
thin film oven, 19
checks on (continuous mix plants), 179
chief sources, 3
cold-laid, parking areas, 265
cold-mix, driveways, 275
curbs, 246
cutback See Cutback asphalt
definition, 7
distribution
batch plant, 174
continuous mix plants, 177
emulsified, 198
enveloping, 102 (Fig. V 4)
gutters, 246
history, 1
hydraulics, 277-303 See Hydraulics
kettle, 308
liquid See Liquid asphalt
macadam, 12; 193-201
mastic, 13
medium-setting, 28
meters, 173
mixed-in-place construction See Mixed-in-place construction mixes
classification and composition, 108
curb, 246
design of, 107
equipment for spreading, 121
paving, 36-52; classification, 62; 63 (Fig. IV-1); design, 67 (Table IV-8)
See also Mix, Plant mix
natural, 1; 7
occurrence, 1
overlay, 10
panels, 9, 269; 286
pavements, 10 See also Pavements, Pavement structures
paving machines, 121, 187
penetration macadam See Penetration macadam
petroleum, 1; 2 (Fig. I-1); 3; 7
planks, 9, 258
plants, 120 See also Batch plants, Continuous-mix plants, Plants
products, uses of, 4
(Table I-1)
properties, 1
pumps, 177, 179
requirements in penetration macadam construction using asphalt cement or heavy cutbacks, 197 (Table VII-10)
requirements for various widths and gallons per square yard,
gallons per 100 linear feet, 344 (Table XV-6)
gallons per mile, 345 (Table XV-7)
residue, 26
return line, 169 (Fig. VII-12)
road-mix construction, types and grades, 203
rock, 1, 9
roll roofing, mineral surface, 305; smooth surfaced, 305
roofing equipment, 309
roofs, 304-310
advantages, 304
application, 307
history, 304
industrial, 307
prepared products, 305
types, 304
sand-asphalt, 13
sawdust surface, playgrounds, 310
sheet, 13
Asphaltic materials

Bitumen, 7
cement, 7
flux, 8
Gislonite, 9
joint filler, 9
liquid, 3 (Fig. 1-2); 8
mineral filled, 8
natural, 7
paint, 9
powdered, 8
primer, 9
products, 3
solid, 8

Authoritative methods of tests as commonly specified, 50-52

Asphalt cement, 50
cutback asphalt, 50
emulsified, 51
mineral aggregates, 51
paving mixtures, 52
slow-curing asphalt, 51
Axle load, 76
Backfilling, curb construction, 249
Ballast and loading, proof rolling, 151
Bank paving, 291 (Fig. XIII-7)
Base course See Courses
Batch plant, 171-176; 123 (Fig VI-6)
asphalt distribution, 174; meters, 173
bin withdrawal sequence, 173
checking scales, 171
leakage, 176
mixing time, 176
timing device, 176
sampling and testing schedule, 180 (Table VII-7)

Bearing value, 78
Bin samplings, 166; withdrawal sequence, batch plant, 173
Binder courses, 12; pavement structure, 85-90; type and thickness, 89; 95
Bitumen, 7
Black seal, 11
Blade mixing, 206
Bleeding and instability, 236
Blocks, asphalt

Recommended thicknesses for typical applications, 390 (Table XV-40)
weight and quantity relationships, 391 (Table XV-41)
Breakdown rolling, 191

Bridges
asphalt surfaces, 253-259; plank, 258
floor systems (new), 253; (old), 255
reconstructing, 257
resurfacing, old, 255-258

Brooms and cleaning equipment, 112

Bus stop areas, 76
California Bearing Ratio (CBR), 78
Canal linings See Linings, canal
Carry-over, 164
Cement mixing, 29

cements, asphalt, for paving, 6 (Table 1-2)
See also Asphalt cement

Centrifuge extraction method, 47; 182
Chip seal, 232
Chuck holes, 235

Cleveland Open Cup Flash Point Test, 16 (Fig. III-2); 18

Coiled car, double unit, 334 (Fig. XV-2); single unit, 333 (Fig. XV-1)
Cold asphalt mastics, 223
Cold feed, 157

arching fine aggregate in, 160 (Fig. VII-6)
storage units, loading, 158
supply, 158
(three-bin) a nd belt, 158 (Fig. VII-5)

Cold-laid asphalt, parking areas, 265
Cold-mix asphalt, driveways, 273

Combination pavement structures, 10
Compacted pavement, weight and volume relations for various types, 362 (Table XV-20)
Compaction, 101; 137-154
criteria, 138
curb construction, 248
cut sections, 140
equipment, types of compactors, 129 (Fig. VI-9)
lifts, 140
materials, 139
of mix, 190-193
pavement structures, 75
pneumatic rollers, typical performance data, 147 (Table VII-4)
pneumatic-tire, 141
prime-membrane canal linings, 282
road-mix, 208
sidewalk materials, 252
subbase and improved subgrade materials, 100
tests, 138

Compactor, 38 (Fig. III-13)
Compactors, types, 129 (Fig. VI-9); vibratory, 130; 151
Comparison of viscosities, 24 (Fig. III-7)
Concrete mix, gradings for hydraulics, 281
Construction
asphalt pavements, 131-224
control, drainage, 137
free-movement plane, roof deck parking area, 268
groins and jetties, 296
methods, pavement, 131; proof rolling, 151
permeable, 292
procedure
linings, asphalt concrete, 281; buried membrane, 282; pond and reservoir, 289; prime-membrane, 282
penetration macadam, 195
steps, bridge surfaces, 254
See also Stage construction, Mixed-in-place construction
Contact areas and pressures, compactor tires, 142 (Table VII-1) and widths, comparison for comparable wheel loads and contact pressure for smooth wide tread compactors, 146 (Table VII-4)
Concrete mix, gradings for hydraulics, 281
Construction
asphalt pavements, 131-224
control, drainage, 137
free-movement plane, roof deck parking area, 268
groins and jetties, 296
methods, pavement, 131; proof rolling, 151
permeable, 292
procedure
linings, asphalt concrete, 281; buried membrane, 282; pond and reservoir, 289; prime-membrane, 282
penetration macadam, 195
steps, bridge surfaces, 254
See also Stage construction, Mixed-in-place construction
Contact areas and pressures, compactor tires, 142 (Table VII-1) and widths, comparison for comparable wheel loads and contact pressure for smooth wide tread compactors, 146 (Table VII-4)
Curbs, asphalt, 246-250
backfilling, 249
curing, 249
foundation preparation, 248
hand placed, 249
joints, 249
machine placing, 248
mix, 247
painting, 249
Cutback asphalt, 8, 22, 157
heavy, in penetration
macadam construction, 197 (Table VII-10)
tests
authoritative methods
commonly specified, 50
distillation, 24
open test flash point, 22
specific gravity, 25
viscosity, 22
Cut-back primer, prime-
membrane canal
linings, 282
Cut sections, compaction
of, 140
Dam facings, 303
Decks
flat plates, steel, resur-
facing, 256
roof, 267
wood, reconstructing, 257
See also Floor systems, Floors
Deep patch (permanent re-
pair), 234
Definitions
asphalt, 7
base course, 11
binder course, 12
block pavements, 14
blocks, 9
cement, 7
concrete, 13
dense graded aggregate, 13
description, 12
dynamic modulus, 12
emulsified asphalt, 8
emulsion slurry seal, 11
fog coat or black seal, 11
good asphalt, 8
hot-laid mixtures, 12
liquid asphalt
cutback asphalt, 8
dynamic modulus, 12
emulsified asphalt, 8
inverted asphalt, 8
inverted emulsion, 9
medium curing asphalt, 8
neutralizing asphalt, 8
road oil, 8
slow-curing asphalt, 8
macadam aggregate, 12
mineral dust, 13
mineral filled asphalt, 8
mineral filler, 13
mixed-in-place, 12; sur-
face treatments, 210
multiple surface treat-
ments, 11
natural (native) asphalt, 7
open graded aggregate, 13
oxidized or blown asphalt, 7
petroleum asphalt, 7
plant mix, 12
plant mixed surface treat-
ments, 215
powdered asphalt, 8
preformed asphalt joint fillers, 9
preformed asphalt joints, 9
premolded asphalt panels, 9
prepared roofing, 305
primers, 209
rock asphalt, 9; pave-
ments, 14
sand asphalt, 13
seal coat, 220
sheet asphalt, 13
single, multiple surface
 treatments, 210
solid or hard asphalt, 8
sprayed asphalt with
cover aggregate, 210
stone-filled sheet as-
phalt, 13
surface treatment, 208
tack coat, 220
Demulsibility, 28
Density, 45
formula, 45; actual, 47;
thoretical, 47
and specific gravities of
miscellaneous solid
and liquid mater-
ials, 370 (Table XV-26)
and viscosity of water
at various tempera-
tures, 381 (Ta-
ble XV-35)
Depressions, repair, 237
Design
airfield pavements, 105
alternate, 81
asphalt mixes, 107-110
considerations, 81
details, miscellaneous,
100-102
driveway, cross section,
272
dikes, recommended,
245
economic analysis and
selection of, 102-105
examples, typical, 398-400
groins and jetties, 296
hydraulics, 277
job mix formula, 108
pavement courses, 81
bases, 90-94
binder, 85-90
subbases and improved subgrades, 94-100
surface 85-90
paving mix, 41; methods, 67 (Table IV-8)
procedures, 75; 81-90
selection, 102; 104
steps, 74
tennis court, layout, 312
(Fig. XIV-2)
Dikes, 297
Distillation, 24; 25 (Fig. III-8); 26
Distributor, asphalt, 115; 114 (Fig. VI-2)
Drainage, 101
construction control, 137
driveways, 273
in farm uses, 320
filter material grading limits, 134
high ground water table, 137
moisture control, 137
in parking areas, 267
pavement, structures, 74; 132-137
sidewalks, 250
tennis courts, 313
trench design, 136
wet cuts, 135
Dryer, aggregate, 161; fine aggregate requires more heat, 162 (Fig. VII-7)
Driveways
asphalt paved, 270-276, 272 (Fig. XII-1),
wearing course, 273
base construction, 273
design cross section, 272
drainage, 273
pavement thickness, passenger cars, 274
(Table XII-3)
subgrade preparation, 271
typical cross-section, 272 (Fig. XII-2)
Drive-in theatres, 321
Ductility, 20 (Fig. III-4)
Dust collector, 163; palliatives, 209
Dikes, 245
Economic analysis, 75; pavement structures, 102; 104 See also Cost Estimate
Edge breaking, 237
Emulsified asphalt, 27 tests
cement mixing, 29
demulsibility, 28
residue, 28
settlement, 28
sieve, 29
specific gravity, 29
viscosity, 27
Emulsion slurry composition, 216
seals, applied with spreader box, 219
(Fig. VII-18);
Washington, D. C. street, 219 (Fig. VII-17)
spreading, 217
Emulsions, in-place mixes, 204
Equipment
aggregate dryer, 161; spreader, 118
asphalt construction, 111-131
brooms and cleaning devices, 112
compaction, 38 (Fig. III-13); 122; methods and equipment, 137-154
compactor tires, contact areas and pressures for various inflation pressures and wheel loads, 142 (Table VII-1)
compactor types, 38
(Fig. III -13); 129
(Fig. VI-9)
distributor, asphalt, 115; 214
eulsion slurry, 216
erosion control, lake shore, 295
feeders, 159
heaters, 112; planers, 130
levee construction, 292
meters, asphalt, 173
mixed-in-place construction, 118
motor transport trucks, 111
pavers, 121; makes, 122, 126, 127; typical design, 125; 187
plant, 120
pneumatic rollers, 141
pneumatic-tire compaction, 141; rollers, 128
power grader, 121, 187
proof rolling, 152
pugmill mixer, 174, 178
pulverizers, 113
for railroad roadbed treatment, 261
road mixing, 118, 120
roofing application, 308
scrapers, 113, 113 (Fig. VI-1)
screens, 164
spray bar, 178 (Fig. VII-15)
spreader boxes, 122
spreaders aggregate, 117
asphalt mixes, 121
gravel, roofing, 399
hopper, 119 (Fig. VI-5)
vane, 119 (Fig. VI-4)
whirl, 119 (Fig. VI-3)
spraying and compaction, road mix, 208
steel drums, 112
tank cars See Tank cars
tanks See Tank capacities
timing device, mixer, 176
viscometer, Zeitvuchts, 24
Erosion control, stream and lake 290
Evaluation methods, course materials, 78, 396 See also Test, Testing of subgrade, subbase, and base course materials, 77-81

Extraction, 47, centrifuge method, 47; 182

Feeders calibrating and setting, 160 functioning, 159 types, 159

Felt-layer, roofing, 309

Filter material grading limits, 134

Final job-mix formula, 109

Flash point See Tests

Float, 26; test, 27, (Fig. III-9)

Floor systems (bridges), steel, 254-256; types, 253-255 See also Bridges, Decks, Floors

Floors asphalt block, 322 concrete, 322 mastic, 321 factory, 321 open grid-type steel, 256 warehouse, 321 See also Bridges, Decks

Fog seal, 211; 218; 232

Forms, suggested cost estimate for alternate sections, 103 (Fig. V-5)

course material evaluation data form, 80 (Fig. V-1)

Formulas density, 45-46-47 for determining amount of asphalt, 109 job mix, 108 for specific gravity correction, 193 See also Mixes, Specifications, Tests

Friction, surface coefficient of, 89

Frost, action on subbase and improved subgrade materials, 99

Gilionite, 9

Gradation requirements, 60 (Table IV-6)

Gradings, mix for hydraulics, 281

Gravel spreader, roofing, 309

Grains, 296; Ocean City, Md., Illus., 298, 299

Grouted rip-rap lining, 289

Grouting the core mass, jetty, 300; mixtures, 302

Gutters, asphalt, 246

Heater planers, 130

Heaters, 112

High-type roads, stage construction, 226

Hot asphalt mastic, 223

undersealing Portland cement concrete with, 230 (Fig. VIII-1)

Hot bins, 165

Continuous mix plants, 177

segregation of material in, 169 (Fig. VII-11)

Hot screens, 164

Hopper spreader, 119 (Fig. VI-5)

Hubbard-Field Method, 41; 182; mix design, 108; stability test, 41

Hveem Method, 38; 182 mix design, 108 tests centrifugal kerosene equivalent (CKE), 39 cohesimeter, 40 (Fig. III-15) stabilometer, 39 (Fig. III-14)

Hydraulics, 277-303 asphalt concrete linings, 281 grains and jetties, 296-303 capping the jetty, 300 consolidating and waterproofing under water, 297 design, 297 grouting the core mass, 300 jetty and section, 301 (Fig. XII-8); asphalt filled, 301 (Fig. XIII-9); Galveston, 301 (Fig. XI-10); Ocean City, Md., 298, 299 mixtures, grouting and capping, 302 repairing gaps, 300 vibrating tools, 302 waterproofing sides, 300

backfilling and watering of cover material, 284

Klamath Project Oregon, 284 canal linings, 281-286 buried membrane, construction procedure, 284; materials, 283 typical section (canal) 278 (Fig. XIII-1)
dam facings, 303 design, 279 levee slope, section 291 (Fig. XIII-7) prefabricated canal and reservoir lining, 285-289 grouted rip-rap, 289 qualities demanded, 287 service history, 286 pump laterals (Ygnacio) in process of being laid, Central Valley Project near Concord, Calif., 291 (Fig. XIII-6) reservoir and pond linings, 289; materials and design construction, 289 stream and lake erosion control, 290 grade of asphalt cement, 294 hot asphalt mixtures under water, mass placement, 295 lake shores, 295 levee construction, 293; slope section, 291 (Fig. XIII-7)
permeable construction, 292
thickness, 292
use of local aggregates, 294
wire reinforcement, 293
storm channel linings, 277-302; Los Angeles County, Calif., 278 (Fig. XIII-1)
structures for process industries and wash treatment systems, 303
subgrade, 277
weed control, 279
See also Linings
Improved subgrades
materials for, 99
quality and thickness requirements, 94
use of, 98
Industrial floors, 321
Internal valve assembly, steam and outlet connections (single and double coil), 335 (Fig. XV-3)
Jetties, 296
asphalt filled, end section, 301 (Fig. XIII-9)
capping, 300
consolidating and waterproofing under water, 297
Galveston, 301 (Fig. XIII-10)
stone, end section, 301 (Fig. XIII-8)
Job-mix formula, 108

Joints
asphalt curb, 246
longitudinal, 191
paving, 188
transverse, 190
Laboratory design methods, suitability of, 67 (Table IV-9)
Lake shores, erosion control, 295
Levee construction, 293; slope section, 291 (Fig. XIII-7)
Lifts, thickness, 140
Linear feet covered by one ton of material for various widths and pounds per square yard, 366-367 (Table XV-24)
tank of any capacity for various widths and gallons per square yard, 353 (Table XV-15)
various tank capacities for various widths and gallons per square yard, 600 gal. tank, 346 (Table XV-8)
800 gal. tank, 347 (Table XV-9)
1000 gal. tank, 348 (Table XV-10)
1200 gal. tank, 349 (Table XV-11)
1500 gal. tank, 350 (Table XV-12)
2000 gal. tank, 351 (Table XV-13)
2500 gal. tank, 352 (Table XV-14)

Linear measurements, conversions, 372 (Table XV-27); 373 (Table XV-28); 374 (Table XV-29)
Linings
asphalt concrete, construction, 281
canal, 277
back-filling and waterproofing of cover material, 284 (Fig. XIII-3)
buried membrane, 282; construction procedure, 284, materials, 283
prefabricated, asphalt, 285
(first type) Mile Post 6-7, “D” line, Payette Division, Boise Project, Idaho, 287 (Fig. XIII-4)
(second type) Lateral 69.1 Roza Project, 8 miles north of Sunny-side, Washington, 287 (Fig. XIII-5)
(third type) Ygnacio Pump Laterals being laid, Central Valley Project near Concord, Calif., 291 (Fig. XIII-6)
qualities demanded, 287
service history, 286

grouted rip-rap, 289
pond, 289
reservoir, 289
storm channel, 277
See also Hydraulics
Liquid asphalt
composition, 3 (Fig. 1-2)
cutback, 8
dust palliatives, 209
emulsified, 8
inverted emulsion, 9
medium curing, 8
rapid curing, 8
road oil, 8
slow curing, 8
Liquid asphaltic products, 3 (Fig. 1-2)
Liquids, temperatures of, heated by steam at various gauge pressures, 360 (Table XV-18)
Long cracks, 233
Los Angeles abrasion test, 31; abrasion machine, 33 (Fig. III-11)
Low-type roads, progressive improvement, 225
Macadam, asphalt, 12; 193-200. See also Penetration macadam
Machine placing, curb construction, 248
Maintenance, 231-237
alligator cracks, 233
deep patch, 234
seal coat with cover aggregate, 235
skin patch, 235
bleeding and instability, 236
bridge surfaces, 253
chip seal, 232
crush holes, 235
depressions, 237
decoating, 237
drainage distress, correction, 232; types, 231
drainage roadbeds, 261
ravelled surface, 233
sidewalk, 252
treatments, 233
weather surface, 233
Marshall method, 36; 108; 182; stability and flow test, 37 (Fig. III.17)
Mastic seal coats, 222
Materials
compaction equipment, type to use with various, 141
curb mix, 247
data form for summary of, 80
erosion control, lake shore, 295
evaluation, 78, 394
farm uses, 319
filter, 134
improved subgrade, 98
levee construction, 292
linings, canal, 281; pond, 289; reservoir, 289
local, 94; 203
pavement structures, base, 79; selection, 79; subbase, 97
paving mixture requirements, 85
roof deck surface dressing, 269
See also Courses, Quantities, Sampling, Testing
Measurements: See Conversion factors, Conversion of linear measurements, Plane figures, Proofrolling, Tank capacities, Temperature, Volume, Weight
Membrane seal, application, 282
Methods
design, 74, 75
evaluation, pavement structure, 77-81
extraction, centrifugal 47; reflex, 48, 182
importance of, 131
for laboratory design of mixes
Hubbard-Feld, 41
(incl. Fig. III.16, III.17)
Hveem, 38 (incl. Fig. III.14, III.15)
Marshall, 36 (incl. Fig. III.12)
pavement, maintenance and repair, 231, 237
test, list of authoritative, 50
See also Construction, Procedures, Tests
Mix
checks on asphalt content, 183
cold for driveways, 275
cold-laid, 12, 40 sleeping areas, 265
compositions, suggested, 64 (Table IV-7)
continuous mix plant, sampling and testing, 182
curb, 246
design
methods, 36; 67 (Table IV-8); 108
studies, formula for determining amount of asphalt, 109
groins and jetties, 296
grouting, 289, 302
in-place, 12, 204
patch, 232
See also Asphalt mixes.
Mixing, Paving mixes, Plant mix, Mixed in-place construction, 201-208; equipment for, 118
Mixer See Pugmill
Mixing
blade, 206
rotary, 207
travel plant, 205
Mixing time, batch plant, 176; continuous mix plant, 179
Modernization of old roads, 227
Moisture, 36
control, 132; 137; and frost effects, 79
and volatile content, aggregate mixtures, 207
and/or volatile distillates, 48
Multiple lane pavement, 76
Multiple surface treatment, 232
Overlay asphalt, 10
Overlaying, 229
Overlays, 216
Paint asphalt, 9
Painting, curb, 249
Panels, premolded, 9 See also Asphalt panels
Parking areas, 76; 265-270
drainage, 267
free-movement - plane construction, 268
roof deck, 268
surface types, 265
thickness for passenger cars, 266 (Table XII-1); for heavy trucks, 266 (Table XII-2)
Pavement
asphalt block, 14
airfield design, 105; San Francisco International Airport, 106
Washington National Airport, 106
compacted asphalt, weight and volume relation for various types, 362 (Table XV-20)
compaction, 137
construction, 131-224; summary of specifications and principal recommendations, 53-72
courses, 81
distress, 224; corrections, 232; types, 231
drainage and moisture control, 132-137
edges, 191
foundation for, 132
heavy-duty asphalt, 13
imperfections, possible causes, 194 (Table VII-9)
lifts, thickness, 140
multiple lane, 76
old, preparation when used as bases, 154; 218
reconstruction, 228
rock asphalt, 14
sheet asphalt, 13
Pavement structures
asphalt, 10, 11-12; enveloping, 102
(Fig. V-4); treatment, base materials, 79
bases
asphalt, 90; treated, 93
non-asphaltic, 91
quality and thickness requirements, 90-101
binder course, thickness and type, 89
bus stop areas, 76
coefficient of friction, 89
combination or composite, 10
cost estimate for alternate sections, suggested form, 103 (Fig. V-5)
course materials, evaluation, 77-81; selection, 79
design
alternate, 81
considerations, 81
details, 100
procedures, 81-90
selection, 102
steps, 74
drainage and compaction, 75; 101
economic analysis and design selection, 102-105
evaluation method, 78
materials data, suggested form, 80
(Fig. V-1)
moisture and frost effects, 79
multiple lane, 76
parking lots, 76
sand equivalent of combined mineral aggregate, 89, 93
shoulders, 101
surface course characteristics and functions, 85
requirements, 192
types and thickness, selection, 86, 87 (Table V-2); suggested and recommended, 88 (Table V-3)
test methods for soils, 79
thickness design, 74-110
farm uses, 319
minimum requirements, surface, binder and base courses, 95 (Table V-4)
total, 82
traffic analysis, 76;
base requirements for, 92
type and thickness, asphalt course and binder courses, 85
typical sections, 82
(Fig. V-2)
See also Compaction, Compactors, Courses, Plant mixes, proofrolling
Pavers, 121; 187
makes, 122; Blaw-Knox, Barber-Greene, Cedarapids, Pioneer, illus. 126, 127
typical design, 125 (Fig. VI-8)
Paving, 6
bank, 292
cement, grades, 16
mixes
classification, 63 (Fig. IV-1)
criteria for test limits, 68 (Table IV-9)
description, 62
methods, 67 (Table IV-8)
general, 36
hot plant, causes of imperfections, 184
deficiencies, 185
(Table VII-8)
for ramps to roof deck, 270
requirements, 85
suggested specifications, 72
tests
triaxial, 43
density, 45
extraction, 47
Hveem Method, 38
Marshall, 36
Hubbard-Field, 41
moisture and/or volatile distillates, 48
swell, 49
voids, 46
See also Asphalt mixes, Mixes, Plant mixes, Quantities
tracks, 260
Penetration, 15 (Fig. III-1)
Penetration macadam aggregate and asphalt requirements using asphalt cement or heavy cutbacks, 197 (Table VII-10)
parking areas, 265
using asphalt cement, 195
using emulsified asphalt or light cutbacks, 198
Permeable construction, 292
Petroleum asphalt flow chart, 2 (Fig. I-1)
Pipe coatings, 322
Plane figures, areas of, 382 (Table XV-36)
Planks, 9, 258
Plant inspection, 183
Plant mix, 12
compacting, 190
deficiencies, 194 (Table VII-9)
hauling, 186
hot, economy and quality, 154
for surface treatments, 215
spreading, 186
use, manufacture and inspection, 154
See also Asphalt mixes, Mix, Paving mixes
Plants
asphalt, 120; (continuous, 124 (Fig. VI-7)
batch, 171-176
continuous mix, 177-185, 123 (Fig. VI-6)
hot-mix, 156
Playgrounds, 310-313, Astoria, L.I., 311 (Fig. XIV-1)
Pneumatic-tire compaction, 141; rollers, 128
Pond linings, 289 See also Linings
Portland cement concrete
floor slabs, new bridge surfacing, 253; old bridge resurfacing, 255
undersealing with hot asphalt, 230 (Fig. VIII-1)
Pounds per square yard of material required for various depths and weights in pounds per cubic yard, 363 (Table XV-21)
Power grader, 121, 187
Pretabricated canal linings, 285 See also Linings
Preliminary job-mix formula, 109
Prepared roofing, 305
Prime coat, 11
Primer, 9
Primes, 209
Principal uses of asphalt cements, 6 (Table I-2); asphaltic products, 4 (Table I-1)
Procedures, design, 81-90
See also Construction, Methods, Mixes, Pavement, Repair, Tests
Proofrolling, 151
ballast and loading, 153
construction methods, 153
measurement and payment, 154
Pugmill
leakage, 176
the mixer, 174
mixing time, 176
timing device, 176
underfilled, 175 (Fig. VII-13)
overfilled, 175 (Fig. VII-14)
Pulverizers, 113
Pumps, 177; 179
Quantities
aggregate and asphalt requirements for penetration macadam construction using asphalt cement or heavy cutbacks, 197 (Table VII-10)

asphalt and aggregate single surface treatments and seal coats, 212 (Table XV-12)
asphalt block weight and quantity relationships, 391 (Table XV-41)
asphalt for in-place mixes, 204
asphalt required for various widths and gallons per square yard
gallons per 100 linear feet, 344 (Table XV-6)
gallons per mile, 345 (Table XV-7)
cubic yards of material required for various widths and depths per 100 linear feet and per mile, 368 (Table XV-25)
formula for determining amount of asphalt, 109
linear feet covered by one ton of material for various widths and pounds per square yard, 366 (Table XV-24)
linear feet covered by various tank capacities for various widths and gallons per square yard
600 gal. tank, 346 (Table XV-8)

800 gal. tank, 347 (Table XV-9)
1000 gal. tank, 348 (Table XV-10)
1200 gal. tank, 349 (Table XV-11)
1500 gal. tank, 350 (Table XV-12)
2000 gal. tank, 351 (Table XV-13)
2500 gal. tank, 352 (Table XV-14)
pounds per square yard of material required for various depths and weights in pounds per cubic yard, 363 (Table XV-21)
tons of material required for various widths and pounds per square yard, per 100 linear feet, 364 (Table XV-22) per mile, 365 (Table XV-23)
for various depths of cylindrical tanks in horizontal positions, 354 (Table XV-16)
See also Volume, Weight
Railroad usage, 261-264
bridges, Timber, asphalt treatment, 263
paving tracks, 260
roadbeds, asphalt treatment, 261; 262 (Fig. XI-1); construction procedures, 263; economic benefits, 263
Rapid-setting emulsions, 28
Ravelled surface, 233
Reconstruction
 old asphalt pavement, 228
 overlaying, 229
 shoulder improvement, 227
 widening, 227
Recovery of asphalt, 48
Reflux extraction method, 47; 182
Repair
 alligator cracks, 233
 bleeding and instability, 236
 chuck hole, mix method, 235; penetration method, 236
 deep patch, 234
 depressions, 237
 edge breaking, 237
 gaps in jetties, 300
 long cracks, 233
 ravelled surface, 233
 seal coat with cover aggregate, 235
 skin patch, 235
 weathered surface, 233
See also Maintenance
Requirements See Materials, Quantities
Reservoir linings, 285, 289
See also Hydraulic Linings
Residue from distillation, 24; 28
Resistance value (R), 78; 396
Resurfacing old bridges, 255
Revetments, 246
Road-mix construction, 201-208
Roadway appurtenances, 242-252
Roads, modernization and reconstruction, 227-231
Rock asphalt, 9
Rolling, 190, 191, 215; See also Compaction, Pneumatic roller, Pneumatic tire, Proofrolling
Roof deck
 parking areas, 267
 and pavement, bonding, 268
 porous layer beneath asphalt surface, 269
 ramps, 270
 surface dressing, 269
Roofing, prepared, 305; See also Asphalt roofs
Rotary mixing, 207
Roza Project, Sunnyside, Washington, prefabricated asphalt lining, 287 (Fig. XIII-4)
Sampling device, 167 (Fig. VII-9); use of, 167 (Fig. VII-10)
Sampling and testing, continuous mix plant, 182; suggested schedule, 180 (Table VII-7); See also Testing, Tests
Sand
 asphalt, 13
 equivalent, 31; 62; of combined mineral aggregate, 89, 93, 108
 seal, 232
Saybolt Furol Viscosity Test, 23 (Fig III-6)
Scales, bath plant, 171; calibration data sheet, 172
Scarifiers, 113 (Fig. VI-1)
Screens, hot, 164; wear, 165 (Fig. VII-8)
Seal coat, 11; 208-224 with cover aggregate, 235
Single surface treatments and seal coats, quantities of asphalt and aggregate, 212 (Table VII-12)
Seals, requirements for U.S. Standard testing, sieves and approx. equivalents of square and round openings, 392 (Table XV-42)
Slag, 36
Slow-curing (SC) liquid asphalt, 26
Tests
 authoritative methods, 50
distillation, 24
ductility, 20
flashpoint, 18
float, 26
residue, 25, 26
solubility, 20
specific gravity, 21
thin film oven test, 19
viscosity, 17
water content, 26
Skid resistance, 89; 221
Skin patch, 234
Slope paving, 246
Slurry seal, 11; 216; maintenance, 231; thickness, 218; See also Emulsion slurry seal
Sidewalks, 250-252
base course, 252
compaction, 252
drainage, 250
maintenance, 252
mixes for, 252
thickness, 251; design, 251 (Fig. IX-3)
surfacing, 250
widths, 250
Smith-Triaxial Method, mix design, 43
Solids, volume and surface area, 384 (Table XV-37)
Solubility, 20
Soundness test, 33
Specific gravities and densities of miscellaneous solid and liquid materials, 370 (Table XV-26)
Specific gravity, 21, 25, 27, 34
apparent, 34
bulk, 34
correction in aggregate, 193
effective, 34
Specifications
aggregates, 59-64
approx. procedure for transforming "Passing Retained" specification to an equivalent "Total Percent Passing", 394 (Table XV-43)
for asphalt, 54-58
pavement construction, principal, 53-72
paving mixes, suggested, 72
Spray bar operation, 178 (Fig. VII-15)
Sprayed asphalt with cover aggregate, 210, 211
Spreaders
aggregate, 118
boxes, 124
roofing aggregate, 309
See also Equipment
Stage construction, 225-227
high-type roads, 226
importance of, 226
low-type roads, 225
Steam, application in unloading tank car, 331
Steel floor systems, surfacing, 254
Steel drums, 112
Steel wheel rollers, 128
Storage, asphalt, 156
Storm channel lined with asphaltic concrete in 1952, 280 (Fig. XIII-2)
Street car tracks, 260
Subbase materials, requirements for, 94
Subbases and improved subgrades, quality and thickness requirements, 94
Subgrade
hydraulics, 277
preparation, membrane canal linings, 282
preparation prior to roadmix operation, 205
Summary of specifications and principal recommendations, 53-72
Surface
coefficient of friction, 89

course, pavement structure, 85-90
dressing, roof decks, 269
treatments, 10, 11; 208-224
driveways, 270
form uses, 319
maintenance, 231
mastic seal coats, 222
parking areas, 265, 266
plant-mix, 215
playgrounds, 310
quantities, asphalt and aggregate, 211; (single), 212
(Table VII-12)
seal coats, 220
sidewalks, 250
single and multiple, 210
skid resistance, new construction, 222;
old pavement, 222
slurry seal, 216
sprayed asphalt with cover aggregate, 211
tack coats, 220
tennis courts, 313
unpaved roads, 209
types, recommended and suggested thicknesses, 86; 87
(Table V-2); 88 (Table V-3)
Surfaces
asphalt plank, 258
driveways, 270
parking areas, 265
preparation for spreading plant mix, 186
requirements, pavement, 192
Surfacing, bridges, 253; resurfacing, 255
Swimming pool
Montpelier, Vt., 317
(Wallington, Conn., 317
(Fig. XIV-4)
resurfaced, 318
Swell 49; tests; 49 (Fig. III-19)
Tachometers, 116
Tack coat, 11; 220
Tandem axles, 76
Tank capacities
linear feet covered by any, for various widths and gallons per square yard, 353 (Table XV-15)
linear feet covered, for various widths and gallons per square yard
600 gal. tank, 346 (Table XV-8)
800 gal. tank, 347 (Table XV-9)
1000 gal. tank, 348 (Table XV-10)
1200 gal. tank, 349 (Table XV-11)
1500 gal. tank, 350 (Table XV-12)
2000 gal. tank, 351 (Table XV-13)
2500 gal. tank, 352 (Table XV-14)
quantities for various depths of cylindrical tanks in horizontal position, 354
(Table XV-16)
Tank cars
 double-unit coiled car,
 334 (Fig. XV-2)
heating, 111; equipment, 330
instructions for unloading, 330
internal valve assembly, steam and outlet
connections (single and double coil), 335 (Fig. XV-3)
placement and unloading, 332
single-unit coiled car, 333 (Fig. XV-1)
sizes, 111
Tank (asphalt) measurements, 168
Temperature
 asphalt mixture, 170
 conversions, °F to °C and °C to °F, 355
 (Table XV-17)
density and viscosity of water at various
temperatures, 381
 (Table XV-35)
of liquids heated by steam at various
gauge pressures, 360 (Table XV-18)
measurement, aggregates, 163
placement, curb mix, 248
 required to pump asphalt from tank
car, 331
 —viscosity of asphalt for mixing, 156
 —volume corrections
 for asphaltic materials, 336
 specific gravity above 0.966,
 337 (Table XV-1)
specific gravity of 0.850-0.966, 339
 (Table XV-2)
emulsified asphalts, 341
 (Table XV-3)
See also Application
 temperatures
Tennis courts, 313; design
 layout, 312 (Fig. XIV-2)
Terms, 7-14 See also Definitions
Test limits, suggested criteria, 68 (Table IV-9)
Test methods, authoritative,
 as commonly specified, 50-52;
 for soils, 79
Testing
 course materials, evaluation of, 78
 sieves, U.S. standard, requirements for
 and approx. equivalents for square
 and round openings, 392 (Table XV-42)
See also Sampling
Tests, 15-51
 on aggregate, 181
 on asphalt, 181
 authoritative methods, as commonly specified, 50-52
 asphalt cement, 50
 cutback asphalt, 50
 mineral aggregates, 51
 paving mixtures, 52
 slow-curing asphalt, 51
 Cleveland Open Cup Flash Point, 18; 16
 (Fig. III-2)
 compaction, 137
 distillation, 24; 25 (Fig. III-8)
 ductility, 20 (Fig. III-4)
 float, 26; 27 (Fig. III-9)
 flash point
 Cleveland Open Cup,
 16 (Fig. III-2); 18
 Open Tag, 21 (Fig.
 III-5); 22
 Pensky Martens, 18
 (Fig. III-3); 18
 Hubbard-Field specimens, two-inch, 42
 (Fig. III-16); six
 inch, 43 (Fig. III-17)
 Hveem Method
 centrifugal kerosene equivalent (CKE),
 39
 cohesiometer, 40 (Fig.
 III-15)
 stabilometer, 39 (Fig.
 III-14)
 Los Angeles abrasion,
 33 (Fig. III-11)
 Marshall stability and flow, 37 (Fig. III-12)
 mix, extraction, 182;
 stability, 182
open tag flash point, 21
 (Fig. III-5); 22
penetration test, 15
 (Fig. III-11)
 Pensky Martens flash point, 18 (Fig. III-3); 18
 on residue, 25
 sand equivalent, 31
 Saybolt Furol Viscosity, 22; 23 (Fig. III-6)
sieve test, 29
 slow curing liquid asphalt
distillation, 26
 ductility, 27
 flash point, 26
 float, 26
 residue, 26
 solubility, 27
 specific gravity, 27
 viscosity, 26
 water content, 26
 Smith, triaxial, 43; 44
 (Fig. III-18)
Soundness, 33
 swell, 49 (Fig. III-19)
 Thin film oven, 19
 viscosity, 22; 23 (Fig.
 III-6)
Thickness
 asphalt blocks, recommended for typical
 applications, 390
 (Table XV-40)
 checks on, 189
 design, 74-110
 in farm uses, 320
 importance in resurfacing old pavement, 230
parking areas, passenger cars, 266 (Table XII-1); heavy trucks, 266 (Table XII-2)
pavement structures
asphalt surface and binder courses, 85
lifts, 140
subbases and improved subgrades, 94
total, 82-84
sidewalks, 250
slurry seal, 216
suggested, of asphalt surfaces, 88 (Table V-3)
Thin film oven, 19
Timing device, batch plant mixer, 176
Tire pressures, proof rolling, 152 See also Compactor tire
Track construction, 260
Tracks in city streets, 260; grade crossings, 260; resurfacing abandoned, 261
Traffic
analysis, 74, 76
classification of, 77 (Table V-1); base requirements for, 92
control, slurry seal, 218; sprayed asphalt with cover aggregate, 210
Travel-plant mixing, 205
Trench design, 134
Triaxial method, 43; Smith triaxial test, 44 (Fig. III-18)
Trigonometric functions, 389 (Table XV-39)
Trigonometric relations and solutions of right angle triangles, 388 (Table XV-38)
Trucks, motor transport, 111
Undersealing portland cement concrete with hot asphalt, 230 (Fig. VIII-1)
Unified soil classification, 78; 397
Usage
drive-in theaters, 321
emulsion slurry, 216
farm, 319-321
fog seal, 218
hydraulics, 277-303
industrial floors, 321
mastic seal coats, 222
miscellaneous, 304-329
mixed-in-place surface treatment, 210
paving, 6
pipe coatings, 322
playgrounds, 310
railroad, 260-264
roofs, 304-310
surface treatments for skid resistance, 221
swimming pools, 316
tack coat, 220
tennis courts, 313
wading pools, 319
Uses, principal
of asphalt, 1-6
of asphaltic products, 4 (Table I-1)
Valve assembly, internal steam, and outlet connections (single and double coil) 335 (Fig. XV-3)
Vane spreader, 119 (Fig. VI-4)
Vibrating tools, 302
Viscometer, Zeitfuchs, 17
Viscosity, 17; conversions for various methods of measurements, 73 (Fig. IV-3); vs. temperature for asphalts, 71 (Fig. IV-2) See also Application temperature
Viscosities, comparison of, 22; 24 (Fig. III-7)
Voids, 46-47
Volume and surface area of solids, 384 (Table XV-37)
Wading pools, 319
Water
in asphalt, 26
density and viscosity at various temperatures, 381 (Table XV-35)
table, high ground, 137
Weather, 211
Weathered surface, 233
Weighing scale calibration data sheet, 172
Weight per cubic foot and per cubic yard dry mineral aggregates for aggregates of different specific gravity and various void contents, 361 (Table XV-19)
Weight and quantity relationships, asphalt blocks, 391 (Table XV-41)
Weight and volume relations of asphaltic materials at 60°F, 342 (Table XV-4)
Weight and volume relations for various types of compacted asphalt pavement, 362 (Table XV-20)
Weights and volumes of asphaltic materials (Approx.), 343 (Table XV-5)
Wet cuts, 135
Wheel loads, contact areas, widths, comparison, 142 (Table VIII-1); and inflation pressures, 150
Whirl spreader, 119 (Fig. VI-5)
Widening, obsolete roads, 227
Wire Reinforcement erosion control, 293
Ygnacio Pump Laterals, Central Valley Project near Concord, Calif., 291 (Fig. XIII-6)
Zeitfuchs viscometer, 17
SOME IMPORTANT TECHNICAL
PUBLICATIONS OF THE ASPHALT INSTITUTE

September 1960

Specification Series

Specifications and Construction Methods for Hot-Mix Asphalt Paving, S.S. 1
Specifications for Asphalt Cements and Liquid Asphalts, S.S. 2
Specifications and Construction Methods for Asphalt Curbs and Gutters, S.S. 3
Miscellaneous Construction Specifications, S.S. 4
Asphalt Protective Coatings for Pipe Lines, C.S. 96

Manual Series

Thickness Design—Asphalt Pavement Structures for Streets and Highways, M.S. 1, (Chapter V of the Asphalt Handbook)
Mix Design Methods for Hot-Mix Asphalt Paving, M.S. 2
Asphalt Plant Manual, M.S. 3
Asphalt Handbook, M.S. 4
Introduction to Asphalt, M.S. 5 (Chapters I-IV of the Asphalt Handbook)
Asphalt Pocketbook of Useful Information, M.S. 6 (Chapter XV of the Asphalt Handbook)
Asphalt Mulch Treatment, M.S. 7

Copies of these and other Asphalt Institute publications are available at any Institute field engineering office listed in the end papers, or at Institute headquarters office at College Park, Maryland.
THE ASPHALT INSTITUTE
EXECUTIVE OFFICES AND LABORATORIES
Asphalt Institute Building
Campus—University of Maryland
College Park, Maryland

MEMBERS OF THE ASPHALT INSTITUTE
(As of July 1, 1960)
The Asphalt Institute is an international, non-profit association sponsored by members of the petroleum asphalt industry to serve both users and producers of asphaltic materials through programs of engineering service, research and education. Membership is limited to refiners of asphalt from crude petroleum. Institute members provide quality products and advocate quality construction and maintenance.

ALLIED MATERIALS CORPORATION
Oklahoma City

AMERICAN BITUMENS & ASPHALT COMPANY
San Francisco and Baltimore

AMERICAN PETROLEUM COMPANY OF TEXAS
Dallas

ANDERSON-PICHARD OIL CORPORATION
Oklahoma City

ASHLAND OIL & REFINING COMPANY
Ashland, Kentucky

THE ATLANTA REFINING COMPANY
Philadelphia

BERRY ASPHALT COMPANY
Magnolia, Arkansas

BERRY REFINING COMPANY
Chicago

BRITISH AMERICAN OIL CO. LTD.
Toronto, Ontario, Canada

BRITISH PETROLEUM COMPANY LTD.
London, England

BYERLYE CORPORATION
Cleveland

CANADIAN HUSKY OIL LIMITED
Calgary, Alberta, Canada

CANADIAN KODIAK REFINERIES LTD.
Edmonton, Alberta, Canada

CITIES SERVICE OIL COMPANY (PA.)
New York

COMPANIA ESPAÑOLA DE PETREOS, S.A.
Madrid, Spain

CONTINENTAL OIL COMPANY
Houston

COSDEN PETROLEUM CORPORATION
Big Spring, Texas

DERBY REFINING COMPANY
Division of Colorado Oil and Gas Corporation
Wichita, Kansas

DOUGLAS OIL CO. OF CALIFORNIA
Los Angeles

D X SUNRAY OIL COMPANY
Tulsa

EDGINGTON OIL REFINERIES, INC.
Long Beach, California

EMPIRE PETROLEUM COMPANY
Denver and Sheboygan, Wisconsin

EMPIRE STATE OIL COMPANY
Thompsville, Wyoming

FARMERS UNION CENTRAL EXCHANGE, INC.
Laurel, Montana

GENERAL ASPHALTS, INC.
A Subsidiary of Kerr-McGee Oil Industries, Inc.
Oklahoma City

GOLDEN BEAR OIL COMPANY
Los Angeles

GREAT NORTHERN OIL COMPANY
St. Paul

HUMBLE OIL & REFINING COMPANY
Carter Division
Billings, Montana

Esso Standard, Division of New York
Humble Division
Houston

HUNT OIL COMPANY
Dallas

HUSKY OIL COMPANY
Cody, Wyoming

IMPERIAL OIL LIMITED
Toronto, Ontario, Canada

LEONARD REFINERIES, INC.
Alma, Michigan

LION OIL COMPANY
A Division of Monsanto Chemical Company
El Dorado, Arkansas

MACMILLAN PETROLEUM CORPORATION
El Dorado, Ark. and Los Angeles

MARUZEN OIL COMPANY LIMITED
Osaka, Japan

MOBIL OIL COMPANY
A Division of Socony Mobil Oil Co., Inc.
New York

MONARCH REFINERIES, INC.
Oklahoma City

NORTHERN REFINING COMPANY
St. Paul Park, Minnesota

AB NYNAS-PETROLEUM
Nynashamn, Sweden

PALOMAR OIL & REFINING CORPORATION
Bakersfield, California

PAZ OIL COMPANY LIMITED
Haifa, Israel

PHILLIPS PETROLEUM COMPANY
Bartlesville, Oklahoma

RAFFINERIE BELGE DE PETROLES, S.A.
Antwerp, Belgium
RICHFIELD OIL CORPORATION
Los Angeles

SHELL INTERNATIONAL PETROLEUM COMPANY, LTD.
London, England

SHELL OIL COMPANY
New York and San Francisco

SHELL OIL COMPANY OF CANADA, LTD.
Toronto, Ontario, Canada

SINCLAIR REFINING COMPANY
New York

SOCAL OIL & REFINING COMPANY
Huntington Beach, California

SOUTH AFRICAN TORBANITE MINING AND REFINING CO. LTD.
Boksburg North, Transvaal

THE SOUTHLAND COMPANY
Yazoo City, Mississippi

STANDARD OIL COMPANY OF BRITISH COLUMBIA, LTD.
Vancouver, B.C., Canada

THE STANDARD OIL COMPANY
(An Ohio Corporation)
Cleveland

SUN OIL COMPANY
Philadelphia

UNION OIL COMPANY OF CALIFORNIA
Los Angeles

U. S. OIL AND REFINING COMPANY
Los Angeles

WILSHIRE OIL COMPANY OF CALIFORNIA
Los Angeles

WITCO CHEMICAL COMPANY, INC.
Pioneer Products Division
New York

INSTITUTE ENGINEERING OFFICES
(As of July 1, 1960)

DIVISION I—ATLANTIC-GULF

NEW YORK 20, N.Y.—1270 Avenue of the Americas

BOSTON 16, MASSACHUSETTS—419 Boylston Street
Connecticut, Maine, Massachusetts, New Hampshire, Rhode Island, Vermont

ALBANY 7, NEW YORK—11 North Pearl Street
New York State (except New York City and Long Island)

HARRISBURG, PENNSYLVANIA—800 North Second Street
Delaware, Pennsylvania

RICHMOND 19, VIRGINIA—Travelers Building
District of Columbia, Maryland, North Carolina, Virginia

ATLANTA 9, GEORGIA—801 Peachtree Street, N.E.
Florida, Georgia, South Carolina

MONTGOMERY 4, ALABAMA—79 Commerce Street
Alabama, Tennessee

NEW ORLEANS 18, LOUISIANA—Maison Blanche Building
Louisiana, Mississippi

DIVISION II—OHIO VALLEY GREAT LAKES

COLUMBUS 15, OHIO—Neil House
Indiana, Kentucky, Michigan, Ohio, West Virginia

LANING 16, MICHIGAN—109 West Michigan Avenue
Michigan, Northern Indiana

LOUISVILLE 7, KENTUCKY—4050 Westport Road
Kentucky, Southern Indiana

DIVISION III—MIDWEST

ST. PAUL 4, MINNESOTA—1951 University Ave.
Colorado, Idaho, Illinois, Iowa, Kansas, Minnesota, Missouri, Montana, Nebraska, North Dakota, South Dakota, Utah, Wisconsin, Wyoming

PIERRE, SOUTH DAKOTA—104 South Euclid
North Dakota and South Dakota

CHICAGO 39, ILLINOIS—6261 West Grand Avenue
Wisconsin and Metropolitan Chicago

SPRINGFIELD, ILLINOIS—2600 W. Springfield, Illinois (except Chicago), St. Louis County, Missouri

KANSAS CITY 3, KANSAS—2500 Johnson Drive
Kansas, Missouri (except St. Louis Co.), Nebraska

DENVER 2, COLORADO—1031 15th Street
Colorado, Utah, Wyoming

HELENA, MONTANA—Power Block
Idaho and Montana

DIVISION IV—SOUTHWEST

DALLAS 6, TEXAS—Meadows Building
Arkansas, New Mexico, Oklahoma, Texas

AUSTIN 1, TEXAS—Perry-Brooks Building

TEXAS

OKLAHOMA CITY 2, OKLAHOMA—Republic Building
Arkansas, Oklahoma

SANTA FE, NEW MEXICO—10 Radio Plaza
New Mexico, Western Texas

DIVISION V—PACIFIC COAST

BERKELEY 10, CALIFORNIA—810 University Ave.
Alaska, Arizona, California, Hawaii, Nevada, Oregon, Washington

LOS ANGELES 17, CALIFORNIA—1709 West 8th St.
Arizona, Southern California

SACRAMENTO 14, CALIFORNIA—Forum Building
Central California, Northern California, Nevada

PORTLAND 1, OREGON—2035 S.W. 5th Avenue
Oregon

OLYMPIA, WASHINGTON—National Bank of Commerce Building
Alaska, Washington